Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Helping Genes Get Out of the Starting Blocks Faster

Published: Friday, February 21, 2014
Last Updated: Friday, February 21, 2014
Bookmark and Share
Yeast can quickly adapt to changes in its environment with the help of molecules known as long non-coding RNAs, a Purdue study shows.

Elizabeth Tran, assistant professor of biochemistry, and her fellow researchers found that long non-coding RNAs prepare metabolic genes to be activated swiftly when baker's yeast needs to switch its source of energy from glucose - its main sugar source - to an alternative sugar, galactose.

The study is the first to link long non-coding RNAs with the timing of gene expression.

"The fact that long non-coding RNAs are involved in the timing of gene expression was totally unexpected," Tran said. "This opens up new and exciting challenges for the future of genomic research."

Long non-coding RNAs - ribonucleic acids that are longer than 200 nucleotides - are molecules that influence the expression of protein-coding genes in yeast, plants and mammals. They were first described in 2007, and the functions of the vast majority of these molecules remain unknown.

One suggested role of long non-coding RNAs in yeast was gene repression, but Tran's study showed the opposite is true: Long non-coding RNAs accelerate the activation of genes involved in galactose digestion when glucose is lacking in the environment.

Yeast with long non-coding RNA begin metabolizing galactose about 30 minutes quicker than yeast without - a significant time difference in an organism that replicates every 90 minutes.

"That quick shift could make the difference in survival," Tran said.

Over time, the level of galactose enzyme gene expression in yeast with and without long non-coding RNAs becomes the same, but "it's that initial burst of gene expression in response to the environment that may provide a significant evolutionary advantage," said Tran. She likened it to the edge a sprinter would gain over his opponents by propelling himself out of the starting block ahead of them.

"One reason the runner Usain Bolt is so fast is that he developed a technique of getting out of the block really quickly," she said. "Being able to do that means you can spread out your energy during the race - all because you started faster at the beginning."

Tran said that similar long non-coding RNAs might play a role in the timing of gene expression in humans as well. In mammals, they are often associated with genes that control growth and organ development, which require tight control of initiation timing.

"When a growing embryo has to make an arm, for example, that timing has to be incredibly precise," she said.

Humans contain upwards of 8,000 long non-coding RNAs, some of which have been linked to cancer, developmental diseases and cardiomyopathy and other non-DNA mutations in the genome. Tran said the chances are high that long non-coding RNAs play a role in human diseases, developmental defects and delays.

"Now the question becomes why long non-coding RNAs are so closely associated with development," Tran said. "Having opened up the possibility that they're linked to timing and not end level of gene expression is really key."

The paper was published online in PLOS Biology and is available online.  


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mass Spectrometry Tool Helps Guide Brain Cancer Surgery
A tool to help brain surgeons test and more precisely remove cancerous tissue was successfully used during surgery, according to a Purdue University and Brigham and Women's Hospital study.
Wednesday, July 02, 2014
Cell-Detection System Promising for Medical Research, Diagnostics
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.
Thursday, October 03, 2013
Purdue Innovation could Improve Personalized Cancer-Care Outcomes
An innovation could improve therapy selection for personalized cancer care by helping specialists better identify the most effective drug treatment combinations for patients.
Friday, August 16, 2013
Nanoparticles, 'pH Phoresis' Could Improve Cancer Drug Delivery
Researchers have developed a concept to potentially improve delivery of drugs for cancer treatment using nanoparticles.
Wednesday, July 10, 2013
New Imaging Technology Could Reveal Cellular Secrets
Researchers have married two biological imaging technologies, creating a new way to learn how good cells go bad.
Friday, April 26, 2013
Yeast Study Yields Potential for New Cholesterol, Anti-Fungal Drugs
While studying a mutant strain of yeast, Purdue University researchers may have found a new target for drugs to combat cholesterol and fungal diseases.
Thursday, February 28, 2013
Gene's function May Give New Target for Cancer Drugs
Scientists have determined that a gene long known to be involved in cancer cell formation and chemotherapy resistance is key to proper RNA creation, and could one day lead to new therapies and drug targets.
Thursday, September 13, 2012
Imaging Tool Tracks Carbon Nanotubes in Living Cells
Researchers have demonstrated a new imaging tool for tracking structures called carbon nanotubes in living cells and the bloodstream, which could aid efforts to perfect their use in biomedical research and clinical medicine.
Thursday, December 08, 2011
Genome Sequencing Speeds Ability to Improve Soybeans
Purdue researchers are sequencing the soybean genome to better understand its genes and to improve its characteristics.
Friday, January 15, 2010
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!