Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene may Help Predict if Further Cancer Treatments are Needed

Published: Saturday, March 29, 2014
Last Updated: Saturday, March 29, 2014
Bookmark and Share
The findings offer insight into helping patients assess treatment risk.

UT Southwestern Medical Center researchers are developing a new predictive tool that could help patients with breast cancer and certain lung cancers decide whether follow-up treatments are likely to help.

Dr. Jerry Shay, Vice Chairman and Professor of Cell Biology at UT Southwestern, led a three-year study on the effects of irradiation in a lung cancer-susceptible mouse model. When his team looked at gene expression changes in the mice, then applied them to humans with early stage cancer, the results revealed a breakdown of which patients have a high or low chance of survival.

The findings, published online in Clinical Cancer Research, offer insight into helping patients assess treatment risk. Radiation therapy and chemotherapy that can destroy tumors also can damage surrounding healthy tissue. So with an appropriate test, patients could avoid getting additional radiation or chemotherapy treatment they may not need, Dr. Shay said.

“This finding could be relevant to the many thousands of individuals affected by these cancers and could prevent unnecessary therapy,” said Dr. Shay, Associate Director for Education and Training for the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern. “We’re trying to find better prognostic indicators of outcomes so that only patients who will benefit from additional therapy receive it.”

Dr. Shay’s study closely monitored lung cancer development in mice after irradiation. His group found some types of irradiation resulted in an increase in invasive, more malignant tumors. He examined the gene expression changes in mice well before some of them developed advanced cancers. The genes in the mouse that correlated with poor outcomes were then matched with human genes. When Dr. Shay’s team compared the predictive signatures from the mice with more than 700 human cancer patient signatures, the overall survivability of the patients correlated with his predictive signature in the mice. Thus, the classifier that predicted invasive cancer in mice also predicted poor outcomes in humans.

His study looked at adenocarcinoma, a type of lung cancer in the air sacks that afflicts both smokers and non-smokers. The findings also predicted overall survival in patients with early-stage breast cancer and thus offer the same helpful information to breast cancer patients; however the genes were not predictive of another type of lung cancer, called squamous cell carcinoma. Other types of cancers have yet to be tested.

The American Cancer Society estimates the risk of developing lung cancer to be 1 in 13 for men and 1 in 16 for women, including both smokers and non-smokers. Lung cancer is the second most common cancer in both men and women, accounting for about 13 percent of all new cancers, and about 27 percent of cancer deaths. The American Cancer Society estimates more than 224,210 new cases of lung cancer and nearly 160,000 deaths from lung cancer will occur in 2014. Survival statistics vary depending on the stage of the cancer and when it is diagnosed.

Dr. Shay’s research is paid for in part by a five-year grant from NASA, which helps fund cancer research due to cancer risks faced by astronauts during space missions.

The findings could lead to more individualized care and pave the way to better, more science-based care and decision making, he said.

“Personalized medicine is coming,” Dr. Shay said. “I think this is the future - patients looking at their risks of cancer recurrence and deciding what to do next. We can better tailor the treatment to fit the individual. That’s the goal.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
Mutations in Two Genes Linked to Familial Pulmonary Fibrosis and Telomere Shortening
PARN and RTEL1 genes strengthen the link between lung fibrosis and telomere dysfunction.
Tuesday, May 05, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Therapeutic Strategy May Treat a Childhood Neurological Disorder
Researchers have identified a possible therapy to treat neurofibromatosis type 1 or NF1.
Wednesday, December 17, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!