Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Entirely Novel Strategy to Molecular Anticancer Therapy Tricks Malignant Cells

Published: Friday, April 04, 2014
Last Updated: Friday, April 04, 2014
Bookmark and Share
New drug prevents tumour growth by inhibiting the nucleotide sanitizing enzyme MTH1.

A study spearheaded by Scientific Director Giulio Superti-Furga at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences shows that fast-growing cancer cells are sensitive towards imbalances in the metabolism of nucleotides, the building blocks of DNA.

This vulnerability can be exploited for a radically novel antitumour therapeutic approach. Not only did the researchers from Vienna, in a joint effort with colleagues from Oxford and Stockholm, identify the enzyme MTH1 as an Achilles heel of malignant tumour cells, but also, in a wonderful twist of fate, they discovered the chemical mirror image of an existing anti-cancer drug called crizotinib to be an efficient inhibitor of MTH1 activity.

The study was published in advance online by the renowned scientific journal Nature on 2nd April 2014.

The importance of MTH1 starts at replication forks, where DNA molecules are duplicated by template-guided serial assembly of nucleotide building blocks. It is crucial that these individual building blocks are intact in order to prevent DNA damage and defects such as mutations. MTH1 is a nucleotide sanitizing enzyme that removes damaged nucleotides.

Unlike in normal cells where this feature is not required because nucleotides are intact, cancer cells suffer from oxidative stress which leads to the damage of nucleotides and thus, MTH1 is indispensable for preserving genome integrity by preventing the incorporation of damaged DNA building blocks.

Clearance of those building blocks damaged by oxidation allows cancer cells to divide and proliferate infinitely. Upon disruption of this protective mechanism by an MTH1 inhibitor, oxidized nucleotides are incorporated into newly synthesized DNA. The damaged DNA strands break and the cancer cell dies.

Selectively toxic anticancer agent identified in model study
In the present study, the researchers at CeMM successfully applied a mass spectrometry-based analytical technique (chemical proteomics) to elucidate the mode of action of a small molecule that was found to selectively target cancer cells.

When examining an incidentally impure laboratory-grade batch of the known and approved protein kinase inhibitor and anticancer drug crizotinib, the researchers discovered an interesting activity that could not be explained by the known properties of this compound. Further investigations revealed that the impurity was the chemical mirror image (enantiomer) of crizotinib, which is identical to crizotinib but varies slightly in its three-dimensional structure.

Strikingly, this stereoisomer was found to be a highly specific inhibitor of the MTH1 enzyme. This entirely unexpected activity distinguishes the so far unexplored enantiomer completely from the clinically used drug and offers hope for a novel therapeutic strategy:

According to this concept, a specific MTH1 inhibitor should be able to exploit the MTH1 dependency present in cancer cells to induce cell death. While the development of new therapeutic drugs is frequently associated with complications and years of optimization experiments, which means that it often takes decades before patients can benefit from the initial discovery, this Viennese study could significantly accelerate the drug development process. Giulio Superti-Furga, principal investigator and leader of the study: “It’s really a rare stroke of luck that we have not only found a previously unknown sore spot of aggressive cancers, but that by chance we simultaneously identified a chemical substance that is a mirror image of one of the best new anticancer agents in the clinic. Double Jackpot!” Kilian Huber, first author of the study adds: “This very high similarity to an already approved and clinically evaluated drug may open the opportunity to quickly test our findings in the clinic for the benefit of the patients.”

In collaboration with Stefan Knapp (University of Oxford), Thomas Helleday (Karolinska Institute, Stockholm) and their teams, and with support of other researchers at CeMM, including Joanna Loizou, Keiryn Bennett and Jacques Colinge, the authors were already able to demonstrate that MTH1-targeting drugs selectively induce DNA damage in cancer cells and impair growth of difficult to treat, aggressive human tumours in model systems. As a target, MTH1 could represent a breakthrough in cancer therapy.

“This paper represents a creative and original application of pharmacology, signal transduction biochemistry, and structural biology employed to make inroads into the therapy of cancers that have to date resisted effective treatment.”, commented Robert A. Weinberg, founding member of the Whitehead Institute for Biomedical Research, Professor of Biology at MIT in Cambridge, USA. Professor Weinberg discovered the first human oncogene RAS and the first tumour suppressor gene RB, and in fact, was the first proponent of MTH1 as a potentially novel and attractive target in oncology. This idea is also supported by a study, which was conducted in parallel by Thomas Helleday at the Karolinska Institute in Stockholm and published as an article back-to-back in the same issue of Nature.

CeMM is Austria’s first independent basic research institute in molecular medicine that was established by the Austrian Academy of Sciences in the 21st century with the specific intent to study innovative diagnostic and therapeutic approaches. CeMM is located amidst the campus of one of the largest university hospitals in Europe. The track record is considerable: Just last December, CeMM researchers published the discovery of a new gene which is responsible for many myeloproliferative neoplasms, in the leading medical journal The New England Journal of Medicine. This discovery is already making a global contribution to a significantly more comprehensive diagnosis of this disease group and thus for the direct benefit of patients.

Giulio Superti-Furga: “The elucidation of the mode of action of drugs is one of the greatest strengths of CeMM, whose expertise and technology assets are world-class in this area. Without the support of public funding for basic research this first breakthrough would not have been possible, and therefore we are grateful to the taxpayers. However, the next challenges will be costly, and it would be a shame if we had to give up at this point in time. Therefore, we depend on a solid funding base and are, in addition, also seeking additional sponsors, philanthropists, organizations, and partners, who share our vision of a fight against diseases through innovative research, and who are interested in a continuation of our research.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!