Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Muscle Weakness Seen in Alcoholism Linked to Mitochondrial Repair Issues

Published: Tuesday, April 22, 2014
Last Updated: Tuesday, April 22, 2014
Bookmark and Share
Scientists found evidence that chronic heavy alcohol use affects a gene involved in mitochondrial repair and muscle regeneration.

Muscle weakness from long-term alcoholism may stem from an inability of mitochondria, the powerhouses of cells, to self-repair, according to a study funded by the National Institutes of Health.

"The finding gives insight into why chronic heavy drinking often saps muscle strength and it could also lead to new targets for medication development," said Dr. George Koob, director of the National Institute on Alcohol Abuse and Alcoholism, the NIH institute that funded the study.

The study is available online in the April issue of the Journal of Cell Biology. It was led by Dr. Gyorgy Hajnoczky, M.D., Ph.D., director of Thomas Jefferson University's MitoCare Center, Philadelphia, and professor in the Department of Pathology, Anatomy and Cell Biology.

Mitochondria are cellular structures that generate most of the energy needed by cells. Skeletal muscle constantly relies on mitochondria for power. When mitochondria become damaged, they can repair themselves through a process called mitochondrial fusion -- joining with other mitochondria and exchanging material such as DNA.

Although well known in many other tissues, the current study is the first to show that mitochondria in skeletal muscle are capable of undergoing fusion as a repair mechanism. It had been thought that this type of mitochondrial self-repair was unlikely in the packed fibers of the skeletal muscle cells, as mitochondria have little opportunity to interact in the narrow space between the thread-like structures called myofilaments that make up muscle.

By tagging mitochondria in the skeletal tissue of rats with different colors, the researchers were able to observe the process in action and confirm that mitochondrial fusion occurs in muscle cells. They also identified a key protein in the process, mitofusin 1 (Mfn1) fusion proteins, and showed that chronic alcohol use interferes with the process.

In rats that were given an alcohol diet, Mfn1 levels decreased as much as 50 percent while other fusion proteins were unchanged. This decrease in Mfn1 was coupled with a dramatic decrease in mitochondrial fusion. When Mfn1 returned to normal, mitochondrial fusion did as well.

"That alcohol can have a specific effect on this one gene involved in mitochondrial fusion suggests that other environmental factors may also alter specifically mitochondrial fusion and repair," said Dr. Hajnoczky. He also suggested that identifying the proteins involved in mitochondrial fusion may aid in drug development for alcohol-related muscle weakness.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Scientific News
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Proteins Preserve Vital Genetic Data
Research has shown how two key proteins bring about the oragnization of chromosomes and our genome.
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Eye Colour Determines Cancer Risk
Researchers report first findings of a link between eye pigment gene and uveal melanoma development.
Telomere Replenishment in Real Time
Researchers have visualised the process of telomere attachment to chromosomes through single-molecule imaging.
Converting Isolated Cells with Gene Editing
Researchers have used CRISPR to generate neuronal cells from isolated connective tissue.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Gene Linked to Hearing Loss Identified
Researchers have identifed a gene associated with age-related hearing loss.
Oxygen Content Contributes to Cancer
Research project concludes lack of oxygen in tumour cells changes cell gene expression, contributing to the growth of cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!