Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

InSphero Publishes 3D Tumor-Stroma Model for Non-Small Cell Lung Cancer

Published: Thursday, April 24, 2014
Last Updated: Thursday, April 24, 2014
Bookmark and Share
PLOS One article delivers promising co-culture method to mimic tumor microenvironment, demonstrating potential for biomarker and drug discovery.

InSphero AG, working with researchers at the Medical University Innsbruck, has published a study highlighting development of a novel 3D cell culture model for non-small cell lung cancer (NSCLC), one of the leading causes of cancer deaths in men and women worldwide. The findings, published March 24 in PLOS One, used InSphero's Grav1tyPLUSTM hanging drop  platform to form 3D tumor spheroid co-cultures comprised of a NSCLC tumor cell line and lung-derived fibroblasts. The results showed how both lung cancer cells and stromal cells (lung fibroblasts) behave differently when grown together in 3D than when grown alone. 

The study was initiated in response to the recent failure of several targeted therapies for NSCLC in clinical trials, therapies which were supported by promising in vitro data. To achieve a better in vitro model, researchers used the NSCLC cell lines A549 or Colo699 to create 3D tumors in hanging drops, with or without the lung fibroblast cell line SV80. The tumors were then analyzed for viability, morpology, and expression of different phenotypic markers using immunohistochemistry (IHC) and other methods. Most notable were changes in the tumor cells during co-culture that indicated an epithelial to mesenchymal transition (EMT), as evidenced by an increase in vimentin protein expression, and a decrease in the epithelial cell adhesion protein E-cadherin. Also of interest was the expression of alpha smooth muscle actin (a-SMA), a marker of cancer-associated fibroblasts, in the SV80 fibroblasts only when co-cultured with A549 cells. 

Dr. Jens Kelm, Chief Scientific Officer and co-founder of InSphero AG was co-author on the manuscript He states the 3D co-culture model should improve drug efficacy testing by removing some of the bias inherent in current 2D in vitro models used to screen anti-cancer drugs. "What this 3D lung cancer co-culture model confirmed for us is that tumor cells are phenotypically different in terms of their viability, activity, and morphology when they grow in the presence of fibroblasts. Likewise, the stromal cells associated with tumors also behave differently in co-culture than they do alone, becoming more like myofibroblasts, cells that are known to assist tumor growth, invasion, and metastasis. This model creates an even more native in vitro tumor environment to more easily assess tumor growth, pathobiology, and drug efficacy." 

Using Insphero's automation-compatible, high-throughput platform, the authors plan to conduct advanced screens for improved anti-cancer drugs and to indentify novel NSCLC biomarkers.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
First Large-Scale Proteogenomic Study of Breast Cancer
The study offers understanding of potential therapeutic targets.
Fungi – A Promising Source Of Chemical Diversity
Moulds and plants share similar ways in alkaloid biosynthesis .
Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Faster, More Efficient CRISPR Editing
UC Berkeley scientists have developed a quicker and more efficient method to alter the genes of mice with CRISPR-Cas9, simplifying a procedure growing in popularity because of the ease of using the new gene-editing tool.
New Tool Could Change How Infectious Diseases Are Diagnosed
Scientists at the University of Utah School of Medicine, ARUP Laboratories, and IDbyDNA, Inc., have developed ultra-fast, meta-genomics analysis software called Taxonomer that dramatically improves the accuracy and speed of pathogen detection.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!