Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Resolving the Structure of a Single Biological Molecule

Published: Tuesday, April 29, 2014
Last Updated: Tuesday, April 29, 2014
Bookmark and Share
Utilising AFM, researchers observed variations in keyways for proteins that may aid our understanding of the genetic information in DNA.

Researchers at the London Centre for Nanotechnology have determined the structure of DNA from measurements on a single molecule, and found that this structure is not as regular as one might think, reports the journal Small.

Our life depends on molecular machinery that is continuously at work in our bodies. The structure of these nanometre-scale machines is thus at the heart of our understanding of health and disease. This is very apparent in the case of the Watson-Crick DNA double-helix structure, which has been the key to understanding how genetic information is stored and passed on.

Watson and Crick’s discovery was based on diffraction of X-rays by millions of ordered and aligned DNA molecules. This method is extremely powerful and still used today – in a more evolved form – to determine the structure of biological molecules. It has the important drawbacks, however, that it only provides static, averaged pictures of molecular structures and that it relies on the accurate ordering and alignment of many molecules. This process, called crystallisation, can prove very challenging.

Building on previous work in Dr Bart Hoogenboom’s research group at the London Centre for Nanotechnology, and in collaboration with the National Physical Laboratory, first author Alice Pyne has applied “soft-touch” atomic force microscopy to large, irregularly arranged and individual DNA molecules. In this form of microscopy, a miniature probe is used to feel the surface of the molecules one by one, rather than seeing them.

To demonstrate the power of their method, Pyne, Hoogenboom and collaborators have measured the structure of a single DNA molecule, finding on average good agreement with the structure as it has been known since Watson and Crick. Strikingly, however, the single-molecule images also reveal significant variations in the depths of grooves in the double helix structure.

While the origin of the observed variations is not yet fully understood, it is known that these grooves act as keyways for proteins (molecular keys) that determine to which extent a gene is expressed in a living cell. The observation of variations in these keyways may thus help us to determine the mechanisms by which living cells promote and suppress the use of genetic information stored in their DNA.

The article, Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy, is available to access online. 

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Questioning the Safety of Selenium to Combat Cancer
Research indicates the need for change in practice as selenium supplements cannot be recommended for preventing colorectal cancer.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
Leukaemia Cell Movement Gives Clues to Tackling Treatment-Resistant Disease
Researchers at Imperial College London have suggested that the act of moving itself may help the cells to survive, possibly through short-lived interactions with an array of our own cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos