Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

3D Genomics Offers Key to Disease

Published: Thursday, May 01, 2014
Last Updated: Thursday, May 01, 2014
Bookmark and Share
First study to address the value of three-dimensional genome organization in the classification of leukemia.

To solve a puzzle, you need to recognize shapes, patterns and a particular kind of order.  In much the same way, researchers at McGill University have discovered that the 3D shape of a leukemia cell’s genome holds a key to solving the puzzle of human diseases. The researchers report their findings in the open access journal Genome Biology.

McGill professor Josée Dostie, a researcher in the Faculty of Medicine in the department of Biochemistry, focused on the shape made by the region spanning the Homeobox A (HOXA) genes in human cells -- a set of 11 genes encoding proteins that are highly relevant to numerous types of cancers. Dostie and colleagues discovered that the shape of this region of the genome was excellent at indicating the subtype of leukemia it comes from. These initial results suggest that 3D genomics might be a way of improving personalised treatment, though application in the clinic is a long way off.

“I have been interested in understanding the role of genome folding with regards to human health and disease,” says Dostie, who is also a researcher at the Goodman Cancer Research Centre. “My approach uses technologies that detect which piece of DNA is close to which one, such that we can reconstruct how the genome is folded in three dimensions by piecing this information together as if it were a puzzle”.

Dostie and the all-McGill team study the organization of entire genomes and of specific regions relevant to human diseases. The HOXA gene cluster is one of these regions that become improperly regulated in many types of cancers.

“Previous studies have shown that looking at gene expression -- the specific proteins produced by the genes -- is a good predictor of whether patients have leukemia”, says Prof. Mathieu Blanchette, a co-author on the study and an assistant professor at McGill in the School of Computer Science. “We found that different types of leukemia cells also have a distinctive chromatin interaction – how the chromatin that makes up the genome is folded.”

It is not clear at the moment whether the genome shape plays a role in causing the cancer, or whether the cancer causes the genome to change shape. Further studies are needed to determine whether genome shape is as good at indicating other types of cancer.

“Our study validates a new research avenue: the application of 3D genomics for developing medical diagnostics or treatments that could be explored for diseases where current technologies, including gene expression data, have failed to improve patient care,” says Dostie, “While the use of 3D genomics in the clinic is still remote when considering the technical challenges required for translating the information to the bedside, we discovered a new approach for classifying human disease that must be explored further, if only for what it can reveal about how the human genome works.”

The article, Classifying leukemia types with chromatin conformation data, is available to access online in Genome Biology. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Great Migration and African-American Genomic Diversity
Study examines genetic data to analyze regional differences in ancestry.
Tuesday, May 31, 2016
HIV Target Shows Surprising Resistance
Research reveals that even a tiny mutation can allow the HIV virus to become resistant to therapies using the CRISPR/Cas9 gene-editing platform.
Monday, April 11, 2016
Honey, I Shrunk The Ants: How Environment Controls Size
Ground breaking epigenetics research has implications for everything from cancer to farming.
Thursday, March 12, 2015
Light Shed On Genetic Architecture Of Kidney Cancer
Research reveals link between renal cell carcinoma and exposure to aristolochic acid.
Wednesday, November 12, 2014
Newly Discovered Effects of Vitamin D on Cancer
Vitamin D slows the progression of cells from premalignant to malignant states, keeping their proliferation in check.
Wednesday, November 28, 2012
Study Reveals Major Genetic Differences between Blood and Tissue Cells
Important questions raised about genetic research based only on blood samples; new treatment in vascular disease foreseen at the same time.
Tuesday, July 21, 2009
Same Drug, Different Results: MUHC Researcher on the Path to Personalized Medicine
Minor genetic differences between individuals change the effect of a common medication, study shows.
Friday, June 27, 2008
Genetic Breakthrough Supercharges Immunity to Flu and Other Viruses
McGill researchers discover way to boost cells' natural anti-virus defences.
Tuesday, February 19, 2008
Why your Fertility Cells must have “Radio Silence”
Scientists discover why cells that become sperm and ova can’t copy their own genes.
Wednesday, February 06, 2008
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!