Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

3D Genomics Offers Key to Disease

Published: Thursday, May 01, 2014
Last Updated: Thursday, May 01, 2014
Bookmark and Share
First study to address the value of three-dimensional genome organization in the classification of leukemia.

To solve a puzzle, you need to recognize shapes, patterns and a particular kind of order.  In much the same way, researchers at McGill University have discovered that the 3D shape of a leukemia cell’s genome holds a key to solving the puzzle of human diseases. The researchers report their findings in the open access journal Genome Biology.

McGill professor Josée Dostie, a researcher in the Faculty of Medicine in the department of Biochemistry, focused on the shape made by the region spanning the Homeobox A (HOXA) genes in human cells -- a set of 11 genes encoding proteins that are highly relevant to numerous types of cancers. Dostie and colleagues discovered that the shape of this region of the genome was excellent at indicating the subtype of leukemia it comes from. These initial results suggest that 3D genomics might be a way of improving personalised treatment, though application in the clinic is a long way off.

“I have been interested in understanding the role of genome folding with regards to human health and disease,” says Dostie, who is also a researcher at the Goodman Cancer Research Centre. “My approach uses technologies that detect which piece of DNA is close to which one, such that we can reconstruct how the genome is folded in three dimensions by piecing this information together as if it were a puzzle”.

Dostie and the all-McGill team study the organization of entire genomes and of specific regions relevant to human diseases. The HOXA gene cluster is one of these regions that become improperly regulated in many types of cancers.

“Previous studies have shown that looking at gene expression -- the specific proteins produced by the genes -- is a good predictor of whether patients have leukemia”, says Prof. Mathieu Blanchette, a co-author on the study and an assistant professor at McGill in the School of Computer Science. “We found that different types of leukemia cells also have a distinctive chromatin interaction – how the chromatin that makes up the genome is folded.”

It is not clear at the moment whether the genome shape plays a role in causing the cancer, or whether the cancer causes the genome to change shape. Further studies are needed to determine whether genome shape is as good at indicating other types of cancer.

“Our study validates a new research avenue: the application of 3D genomics for developing medical diagnostics or treatments that could be explored for diseases where current technologies, including gene expression data, have failed to improve patient care,” says Dostie, “While the use of 3D genomics in the clinic is still remote when considering the technical challenges required for translating the information to the bedside, we discovered a new approach for classifying human disease that must be explored further, if only for what it can reveal about how the human genome works.”

The article, Classifying leukemia types with chromatin conformation data, is available to access online in Genome Biology. 


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Honey, I Shrunk The Ants: How Environment Controls Size
Ground breaking epigenetics research has implications for everything from cancer to farming.
Thursday, March 12, 2015
Light Shed On Genetic Architecture Of Kidney Cancer
Research reveals link between renal cell carcinoma and exposure to aristolochic acid.
Wednesday, November 12, 2014
Newly Discovered Effects of Vitamin D on Cancer
Vitamin D slows the progression of cells from premalignant to malignant states, keeping their proliferation in check.
Wednesday, November 28, 2012
Study Reveals Major Genetic Differences between Blood and Tissue Cells
Important questions raised about genetic research based only on blood samples; new treatment in vascular disease foreseen at the same time.
Tuesday, July 21, 2009
Same Drug, Different Results: MUHC Researcher on the Path to Personalized Medicine
Minor genetic differences between individuals change the effect of a common medication, study shows.
Friday, June 27, 2008
Genetic Breakthrough Supercharges Immunity to Flu and Other Viruses
McGill researchers discover way to boost cells' natural anti-virus defences.
Tuesday, February 19, 2008
Why your Fertility Cells must have “Radio Silence”
Scientists discover why cells that become sperm and ova can’t copy their own genes.
Wednesday, February 06, 2008
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!