Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Virotherapy Shows Promise Against Multiple Myeloma

Published: Friday, May 16, 2014
Last Updated: Friday, May 16, 2014
Bookmark and Share
A Mayo Clinic proof of principle clinical trial, demonstrated that virotherapy, destroying cancer with a virus that infects and kills cancer cells but spares normal tissues, can be effective against multiple myeloma.

Two patients in the study received a single intravenous dose of an engineered measles virus (MV-NIS) that is selectively toxic to myeloma plasma cells. Both patients responded, showing reduction of both bone marrow cancer and myeloma protein. One patient, a 49-year-old woman, experienced complete remission of myeloma and has been clear of the disease for over six months.

“This is the first study to establish the feasibility of systemic oncolytic virotherapy for disseminated cancer,” says Stephen Russell, M.D., Ph.D., Mayo Clinic hematologist, first author of the paper and co-developer of the therapy. “These patients were not responsive to other therapies and had experienced several recurrences of their disease.”

Multiple myeloma is a cancer of plasma cells in the bone marrow, which also causes skeletal or soft tissue tumors. This cancer usually responds to immune system-stimulating drugs, but eventually overcomes them and is rarely cured.

In their article, the researchers explain they were reporting on these two patients because they were the first two studied at the highest possible dose, had limited previous exposure to measles, and therefore fewer antibodies to the virus, and essentially had no remaining treatment options.

Oncolytic virotherapy – using re-engineered viruses to fight cancer – has a history dating back to the 1950s. Thousands of cancer patients have been treated with oncolytic viruses from many different virus families (herpesviruses, poxviruses, common cold viruses, etc.). However, this study provides the first well-documented case of a patient with disseminated cancer having a complete remission at all disease sites after virus administration. 

The second patient in the paper, whose cancer did not respond as well to the virus treatment, was equally remarkable because her imaging studies provided a clear proof that the intravenously administered virus specifically targeted the sites of tumor growth. This was done using high-tech imaging studies, which were possible only because the virus had been engineered with a 'snitch gene' — an easily identifiable marker — so researchers could accurately determine its location in the body.

More of the MV-NIS therapy is being manufactured for a larger, phase 2 clinical trial. The researchers also want to test the effectiveness of the virotherapy in combination with radioactive therapy (iodine-131) in a future study.

The findings appear in the journal Mayo Clinic Proceedings

Other authors include Mark Federspiel, Ph.D., Kah-Whye Peng, Ph.D., M.Med., Caili Tong, David Dingli, M.D., Ph.D., William Morice, M.D., Ph.D., Val Lowe, M.D., Michael O’Connor, Ph.D., Robert Kyle, M.D., Nelson Leung, M.D., Francis Buadi, M.D., S. Vincent Rajkumar, M.D., Morie Gertz, M.D., Martha Lacy, M.D., and senior and corresponding author Angela Dispenzieri, M.D., all of Mayo Clinic.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Wednesday, August 26, 2015
Mayo, Baylor Collaborate
They aim to study genomic links to drug metabolism and other interactions which could be used to provide more tailored patient care.
Friday, May 15, 2015
First Steps in Formation of Pancreatic Cancer Identified
Researchers at Mayo Clinic’s campus in Jacksonville say they have identified first steps in the origin of pancreatic cancer and that their findings suggest preventive strategies to explore.
Tuesday, November 11, 2014
Mayo Clinic Researchers Identify Role of Cul4 Molecule in Genome Instability and Cancer
Cul4 helps to deposit DNA-packaging histone proteins onto DNA, an integral step to help compact the genetic code.
Monday, November 11, 2013
Mayo Florida Receives $5M for Individualized Medicine Clinic
The donation from Florida residents Cecilia and Dan Carmichael will accelerate translation of research to patient care.
Wednesday, August 21, 2013
Mayo Clinic to Collaborate with Indian Science Leaders
The collaboration will cover areas such as drug, device and biomarker studies relating to heart disease, chemical biology, applied genomics and innovations in metabolomics.
Wednesday, October 19, 2011
TGen-Mayo Clinic Study Discovers Role of DNA Methylation in Multiple Myeloma
Report finds development of multiple myeloma is tied to ‘hypomethylation’.
Friday, October 01, 2010
Discovery Suggests Location of Genes for Breast Density, a Strong Risk Factor for Breast Cancer
Researchers at Mayo Clinic and H. Lee Moffitt Cancer Centers have identified a region on chromosome 5p that is associated with dense breast tissue.
Friday, September 07, 2007
Reactivating a Critical Gene Lost in Kidney Cancer Reduces Tumor Growth
Researchers have found that a key gene which is often silenced in clear cell renal cell carcinoma has stopped the tumor growth when restored in human kidney cancer cells.
Monday, August 20, 2007
Mayo Clinic Collaboration Discovers Protein Amplifies DNA Injury Signals
Protein MDC1 amplifies weak DNA injury signals so genetic repair can begin.
Friday, January 27, 2006
Researcher Discover Why Some DNA Repair Fails
This discovery may lead to ways of fixing the process to avoid Huntington's disease and some types of colon cancer.
Wednesday, October 05, 2005
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!