Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Study Shows How Sheep First Separated from Goats

Published: Saturday, June 07, 2014
Last Updated: Saturday, June 07, 2014
Bookmark and Share
Findings support the development of DNA testing to speed-up selective breeding programmes.

Scientists have cracked the genetic code of sheep to reveal how they became a distinct species from goats around four million years ago.

The study is the first to pinpoint the genetic differences that make sheep different from other animals.

The findings could aid the development of DNA testing to speed-up selective breeding programmes, helping farmers to improve their stocks.

The research identifies the genes that give sheep their fleece and uncovers features of their digestive system, which makes them so well-suited to a diet of low quality grass and other plants.

It also builds the most complete picture yet of sheep's complex biology. Further studies using this resource could reveal new insights to diseases that affect sheep.

Researchers from the University of Edinburgh's Roslin Institute, which receives strategic funding from the Biotechnology and Biological Sciences Research Council, were part of a global team that has decoded the genome sequence - the entire genetic make-up - of domestic sheep for the first time.

This team - the International Sheep Genomics Consortium - compared the sheep's genes with those of other animals - including humans, cattle, goats and pigs.

The analysis identifies several genes that are associated with wool production. It also reveals genes that underpin the evolution of the rumen - a specialized chamber of the stomach that breaks down plant material to make it ready for digestion.

This collaborative study, involving 26 research institutions in eight different countries, was led by researchers from the Commonwealth Scientific and Industrial Research Organization, Australia; BGI and the Kunming Institute of Zoology, China; Utah State University and Baylor College of Medicine in the US; and The Roslin Institute.

The BBSRC-funded ARK-Genomics facility - which is part of Edinburgh Genomics at the University of Edinburgh - provided a substantial body of sequence data, including information on which genes are expressed in a spectrum of 40 different tissues.

The study is published in the journal Science.

Professor Alan Archibald, Head of Genetics and Genomics at The Roslin Institute, said: "Sheep were one of the first animals to be domesticated for farming and are still an important part of the global agricultural economy. Understanding more about their genetic make-up will help us to breed healthier and more productive flocks."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!