Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells Hold Keys to Body’s Plan

Published: Monday, June 09, 2014
Last Updated: Monday, June 09, 2014
Bookmark and Share
Case Western Reserve researchers have discovered landmarks within pluripotent stem cells that guide how they develop to serve different purposes within the body.

This breakthrough offers promise that scientists eventually will be able to direct stem cells in ways that prevent disease or repair damage from injury or illness. The study and its results appear in the June 5 edition of the journal Cell Stem Cell.

Pluripotent stem cells are so named because they can evolve into any of the cell types that exist within the body. Their immense potential captured the attention of two accomplished faculty with complementary areas of expertise.

“We had a unique opportunity to bring together two interdisciplinary groups,” said co-senior author Paul Tesar, PhD, Assistant Professor of Genetics and Genome Sciences at CWRU School of Medicine and the Dr. Donald and Ruth Weber Goodman Professor.

"We have exploited the Tesar lab’s expertise in stem cell biology and my lab’s expertise in genomics to uncover a new class of genetic switches, which we call seed enhancers,” said co-senior author Peter Scacheri, PhD, Associate Professor of Genetics and Genome Sciences at CWRU School of Medicine. “Seed enhancers give us new clues to how cells morph from one cell type to another during development."

The breakthrough came from studying two closely related stem cell types that represent the earliest phases of development — embryonic stem cells and epiblast stem cells, first described in research by Tesar in 2007. “These two stem cell types give us unprecedented access to the earliest stages of mammalian development,” said Daniel Factor, graduate student in the Tesar lab and co-first author of the study.

Olivia Corradin, graduate student in the Scacheri lab and co-first author, agrees. “Stem cells are touted for their promise to make replacement tissues for regenerative medicine,” she said. “But first, we have to understand precisely how these cells function to create diverse tissues.”

Enhancers are sections of DNA that control the expression of nearby genes. By comparing these two closely related types of pluripotent stem cells (embryonic and epiblast), Corradin and Factor identified a new class of enhancers, which they refer to as seed enhancers. Unlike most enhancers, which are only active in specific times or places in the body, seed enhancers play roles from before birth to adulthood.

They are present, but dormant, in the early mouse embryonic stem cell population. In the more developed mouse epiblast stem cell population, they become the primary enhancers of their associated genes. As the cells mature into functional adult tissues, the seed enhancers grow into super enhancers. Super enhancers are large regions that contain many enhancers and control the most important genes in each cell type.

“These seed enhancers have wide-ranging potential to impact the understanding of development and disease,” said Stanton Gerson, MD, Asa & Patricia Shiverick and Jane Shiverick (Tripp) Professor of Hematological Oncology and Director of the National Center for Regenerative Medicine at Case Western Reserve University. “In the stem cell field, this understanding should rapidly enhance the ability to generate clinically useful cell types for stem cell-based regenerative medicine.”

“Our next step is to understand if mis-regulation of these seed enhancers might play a role in human diseases,” Tesar said. “The genes controlled by seed enhancers are powerful ones, and it’s possible that aberrations could contribute to things like heart disease or neurodegenerative disorders.”

Scacheri added, “It is also clear that cancer can be driven by changes in enhancers, and we are interested in understanding the role of seed enhancers in cancer onset and progression.”

Other authors included Gabriel Zentner, PhD, of the Basic Sciences Division of the Fred Hutchinson Cancer Research Center, Alina Saiakhova of the Department of Genetics and Genome Sciences of Case Western Reserve University School of Medicine, Lingyun Song and Gregory Crawford, PhD, of the Institute for Genome Sciences & Policy of Duke University, and Josh Chenoweth, PhD, and Ronald McKay, PhD, of the Lieber Institute for Brain Development.

This research was supported by funding from the New York Stem Cell Foundation, the National Institutes of Health, the Mount Sinai Health Care Foundation, the Case Comprehensive Cancer Center and the Case Western Reserve University Cellular and Molecular Biology training grant. 


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

African-American Study Identifies Four Common Genetic Variants Associated with Blood Pressure
Largest study of its kind finds multiple ethnicities impacted by the genetic variations.
Monday, September 16, 2013
Case Western Reserve University Receives $5M for the Center for Stem Cell and Regenerative Medicine
The funding will help support new stem cell technologies including two commercial, four emerging and three pilot projects.
Tuesday, July 14, 2009
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!