Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Method Wipes Out Malaria-Carrying Mosquitoes in Lab

Published: Wednesday, June 11, 2014
Last Updated: Wednesday, June 11, 2014
Bookmark and Share
Scientists have modified mosquitoes to produce sperm that will only create males, pioneering a fresh approach to eradicating malaria.

In a study published in the journal Nature Communications, scientists from Imperial College London have tested a new genetic method that distorts the sex ratio of Anopheles gambiae mosquitoes, the main transmitters of the malaria parasite, so that the female mosquitoes that bite and pass the disease to humans are no longer produced.

In the first laboratory tests, the method created a fully fertile mosquito strain that produced 95 per cent male offspring.

The scientists introduced the genetically modified mosquitoes to five caged wild-type mosquito populations. In four of the five cages, this eliminated the entire population within six generations, because of the lack of females. The hope is that if this could be replicated in the wild, this would ultimately cause the malaria-carrying mosquito population to crash.

This is the first time that scientists have been able to manipulate the sex ratios of mosquito populations. The researchers believe the work paves the way for a pioneering approach to controlling malaria.

Since 2000, increased prevention and control measures have reduced global malaria mortality rates by 42 per cent, but the disease remains a prevalent killer especially in vulnerable sub-Saharan African regions. Malaria control has also been threatened by the spread of insecticide resistant mosquitoes and malaria parasites resistant to drugs. According to latest estimates by the World Health Organisation, over 3.4 billion people are at risk from contracting malaria and an estimated 627,000 people die each year from the disease.

Lead researcher Professor Andrea Crisanti from the Department of Life Sciences at Imperial College London said: "Malaria is debilitating and often fatal and we need to find new ways of tackling it. We think our innovative approach is a huge step forward. For the very first time, we have been able to inhibit the production of female offspring in the laboratory and this provides a new means to eliminate the disease."

Dr Nikolai Windbichler, also a lead researcher from the Department of Life Sciences at Imperial College London, said: "What is most promising about our results is that they are self-sustaining. Once modified mosquitoes are introduced, males will start to produce mainly sons, and their sons will do the same, so essentially the mosquitoes carry out the work for us."

In this new experiment the scientists inserted a DNA cutting enzyme called I-PpoI into Anopheles gambiae mosquitoes. In normal reproduction, half of the sperm bear the X chromosome and will produce female offspring, and the other half bear the Y chromosome and produce male offspring.

The enzyme that the researchers used works by cutting the DNA of the X chromosome during production of sperm, so that almost no functioning sperm carry the female X chromosome. As a result the offspring of the genetically modified mosquitoes was almost exclusively male.

It took the researchers six years to produce an effective variant of the enzyme.

"The research is still in its early days, but I am really hopeful that this new approach could ultimately lead to a cheap and effective way to eliminate malaria from entire regions. Our goal is to enable people to live freely without the threat of this deadly disease", concluded Dr Roberto Galizi from the Department of Life Sciences at Imperial College London.

The study is funded by a grant from the Foundation for the National Institutes of Health, through the Vector-Based Control of Transmission: Discovery Research (VCTR) program of the Grand Challenges in Global Health initiative of the Bill & Melinda Gates Foundation, and the European Research Council.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Supplement May Switch off Cravings for High-Calorie Foods
Researchers have found that inulin-propionate ester supplement curbs cravings for junk food.
Saturday, July 02, 2016
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
Tuesday, May 17, 2016
Switching Off Cancers' Ability to Spread
A key molecule in breast and lung cancer cells can help switch off the cancers' ability to spread around the body.
Tuesday, March 22, 2016
Fossil Find Reveals Just How Big Carnivorous Dinosaur May Have Grown
Researchers at imperial college London have said that an unidentified fossilised bone in a museum has revealed the size of a fearsome Abelisaur and may solve a hundred-year-old puzzle.
Tuesday, March 01, 2016
‘Simple Rules’ Calculate Ovarian Cancer Risk
Scientists have formulated a system that uses ultrasound images to accurately work out the likelihood of an ovarian growth being cancerous.
Wednesday, January 20, 2016
Intelligence ‘Networks’ Discovered in Brain for the First Time
Scientists from Imperial College London have identified for the first time two clusters of genes linked to human intelligence.
Thursday, December 24, 2015
Modified Mosquitoes Could Help Fight Against Malaria
The results are published in the journal Nature Biotechnology.
Tuesday, December 08, 2015
New Technique Negotiates Neuron Jungle To Target Source Of Parkinson’s Disease
Researchers from Imperial College London and Newcastle University believe they have found a potential new way to target cells of the brain affected by Parkinson’s disease.
Wednesday, September 23, 2015
Designer Molecule Shines a Spotlight on Mysterious Four-Stranded DNA
A small fluorescent molecule has shed new light on knots of DNA thought to play a role in regulating how genes are switched on and off.
Thursday, September 10, 2015
New Drug Target Identified for Serious Heart and Lung Condition
A gene has been identified that sheds new light on a potentially fatal heart and lung condition and could lead to a new treatment.
Friday, August 14, 2015
Scientists Find New Variant of Streptococcal Bacteria Causing Severe Infections
Researchers noticed a sharp rise in infections caused by emm89.
Wednesday, July 15, 2015
Gene Therapy for Cystic Fibrosis Shows Encouraging Trial Results
A therapy that replaces the faulty gene responsible for cystic fibrosis in patients' lungs has produced encouraging results in a major UK trial.
Friday, July 03, 2015
New Genetic Form of Obesity and Diabetes Discovered
Scientists have discovered a new inherited form of obesity and type 2 diabetes in humans.
Tuesday, June 30, 2015
New Genetic Form of Obesity and Diabetes Discovered
Scientists have discovered a new inherited form of obesity and type 2 diabetes in humans.
Tuesday, June 30, 2015
Researchers Develop New Breath Test to Diagnose Oesophageal and Gastric Cancer
Test will now be tested in a larger trial involving three hospitals in London.
Tuesday, June 23, 2015
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!