Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Aging Contributes to Rapid Rates of Genomic Change

Published: Thursday, June 26, 2014
Last Updated: Thursday, June 26, 2014
Bookmark and Share
Signaling challenges for personalized medicine.

Exploiting individual genomes for personalized medicine may be more complicated than medical scientists have suspected, researchers at Virginia Bioinformatics Institute have discovered.

In a paper published in June in the journal Aging, scientists from the institute's Medical Informatics and Systems Division found that spontaneous mutations occur in our bodies constantly, but the rate of change differed dramatically among various people.

The study has implications for personalized medicine, which will make use of genomic information to predict future diseases and treatments. With genomes continually shifting over time, the monitoring of genomic health will require more frequent measurement of patients' genomes.

"We have long known that there were mutations acquired in cancerous tumors, but this study confirms that our genome is constantly changing even in healthy tissues," said Harold "Skip" Garner, a professor of biological sciences and computer science at Virginia Tech and a professor of medicine at the Virginia Tech Carilion School of Medicine. "The implications on using genomic information for medicine and medical research in the future are tremendous. Things are not as simple as we once thought."

DNA in our cells changes from exposure to various environmental stressors. This can cause mutations in up to 13,000 genes that raise the risk of diabetes, kidney failure, cancer, rheumatoid arthritis, and Alzheimer's disease - conditions usually associated with aging.

The research may help scientists better understand how individuals tolerate environmental exposure and why some people seem to age faster or slower than others.

"We observed that certain portions of our genome age 100 times faster than others," Garner said. "Microsatellites, once considered 'junk DNA,' are known to be associated with many diseases. They change much faster than individual DNA bases (known as single nucleotide polymorphisms, or SNPs), so it is important that future studies look at this very dynamic part of the human genome."

The researchers used the latest DNA sequencing technology to study the genetic makeup of three individuals at different times in their lives, spanning nine to 16 years. One of the individuals had almost 10 times as many variations as the others, and was found to be at risk for many more potential diseases.

"We observed that the variation rate is specific to the individual and also varies even within an individual's genome," said Jasmin Bavarva, a geneticist at the institute and lead scientist on the project. "Understanding the dynamics of the genome is the key to the success of personalized genomics and this is a major step forward."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Lose Weight, Escape the Eight: Weight-Based Cancer Risk
IARC has identified eight additional cancer sites linked to overweight and obesity.
Coffee Consumption Linked to Genes
Researchers have identified a gene that influences coffee consumption. The gene is thought to relate to caffeine breakdown.
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!