Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Aging Contributes to Rapid Rates of Genomic Change

Published: Thursday, June 26, 2014
Last Updated: Thursday, June 26, 2014
Bookmark and Share
Signaling challenges for personalized medicine.

Exploiting individual genomes for personalized medicine may be more complicated than medical scientists have suspected, researchers at Virginia Bioinformatics Institute have discovered.

In a paper published in June in the journal Aging, scientists from the institute's Medical Informatics and Systems Division found that spontaneous mutations occur in our bodies constantly, but the rate of change differed dramatically among various people.

The study has implications for personalized medicine, which will make use of genomic information to predict future diseases and treatments. With genomes continually shifting over time, the monitoring of genomic health will require more frequent measurement of patients' genomes.

"We have long known that there were mutations acquired in cancerous tumors, but this study confirms that our genome is constantly changing even in healthy tissues," said Harold "Skip" Garner, a professor of biological sciences and computer science at Virginia Tech and a professor of medicine at the Virginia Tech Carilion School of Medicine. "The implications on using genomic information for medicine and medical research in the future are tremendous. Things are not as simple as we once thought."

DNA in our cells changes from exposure to various environmental stressors. This can cause mutations in up to 13,000 genes that raise the risk of diabetes, kidney failure, cancer, rheumatoid arthritis, and Alzheimer's disease - conditions usually associated with aging.

The research may help scientists better understand how individuals tolerate environmental exposure and why some people seem to age faster or slower than others.

"We observed that certain portions of our genome age 100 times faster than others," Garner said. "Microsatellites, once considered 'junk DNA,' are known to be associated with many diseases. They change much faster than individual DNA bases (known as single nucleotide polymorphisms, or SNPs), so it is important that future studies look at this very dynamic part of the human genome."

The researchers used the latest DNA sequencing technology to study the genetic makeup of three individuals at different times in their lives, spanning nine to 16 years. One of the individuals had almost 10 times as many variations as the others, and was found to be at risk for many more potential diseases.

"We observed that the variation rate is specific to the individual and also varies even within an individual's genome," said Jasmin Bavarva, a geneticist at the institute and lead scientist on the project. "Understanding the dynamics of the genome is the key to the success of personalized genomics and this is a major step forward."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos