Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

For Cancer Patients, Sugar-Coated Cells are Deadly

Published: Friday, June 27, 2014
Last Updated: Friday, June 27, 2014
Bookmark and Share
Paszek’s lab will focus on developing high-resolution microscopy to further study cell membrane-related cancer mechanisms.

Every living cell’s surface has a protein-embedded membrane that’s covered in polysaccharide chains - a literal sugar coating. On cancer cells, this coating is especially thick and pronounced.

A Cornell researcher has found that a cancer cell’s sugary outside is anything but sweet. The thick, slimy coating that would feel like a slug’s skin is a crucial determinant of the cell’s survival, it turns out. Consisting of long, sugar-decorated molecules called glycoproteins, the coating causes physical changes in the cell membrane that make the cell better able to thrive - leading to a more lethal cancer.

Matthew Paszek, assistant professor of chemical and biomolecular engineering, led the study on glycoprotein-induced cancer cell survival, published online in Nature June 25. Before he joined the Cornell faculty in January, Paszek was a postdoctoral fellow at the Kavli Institute at Cornell for Nanoscale Science.

The Nature study was initiated by Paszek and co-author Valerie Weaver at the University of California, San Francisco, and includes other collaborators in bioinformatics, clinical research and chemistry. At Cornell, Paszek’s lab will focus on developing high-resolution microscopy to further study cell membrane-related cancer mechanisms.

The researchers found that long glycoprotein chains on a cancer cell’s surface cause the cell membrane to push away from its environment and bend inward. This physical change causes adhesion receptors on the cell surface called integrins to clump together. Integrins bind to protein scaffolds in their environment and regulate pretty much everything a cell does - movement, change and growth.

This clustering mechanism causes the integrins to alter the cell’s normal signaling, leading to unchecked growth and survival.

The mechanics of this sugar coating and its subsequent chemical signaling is likely dictated by basic factors like nutrient availability and metabolism - things with implications for diet and genetic makeup, for example, Paszek said. “Changes to the sugar composition on the cell surface could alter physically how receptors are organized,” he said. “That’s really the big thing: coupling the regulation of the sugar coating to these biochemical signaling molecules.”

The paper, “The cancer glycocalyx mechanically primes integrin-mediated growth and survival,” was the subject of a “News and Views” feature in Nature. Paszek’s work was supported by the Kavli Institute at Cornell for Nanoscale Science.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Gold-Plated Nano-Bits Find, Destroy Cancer Cells
Scientists have merged tiny gold and iron oxide particles, then added antibody guides to steer them through the bloodstream toward colorectal cancer cells.
Monday, October 21, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Dad’s Genes Build Placentas
Though placentas support the fetus and mother, it turns out that the organ grows according to blueprints from dad.
Monday, August 12, 2013
Physicists Tease out Twisted Torques of DNA
Like an impossibly twisted telephone cord, DNA, the molecule that encodes genetic information, also often finds itself twisted into coils.
Monday, July 01, 2013
Expelled DNA that Traps Toxins May Backfire in Obese
The body’s most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight.
Wednesday, June 19, 2013
Genetic Switches Play Big Role in Human Evolution
Study offers further proof that the divergence of humans from chimpanzees was profoundly influenced by mutations to DNA sequences.
Wednesday, June 12, 2013
Genome Offers Clues to Amphibian-Killing Fungus
A fungus that has decimated amphibians globally is much older than previously thought.
Thursday, May 30, 2013
Scientists Find Clues to Some Inherited Heart Diseases
Cornell researchers have uncovered the basic cell biology that helps explain heart defects found in diseases known as laminopathies.
Tuesday, May 07, 2013
Scientists Develop World's Smallest Drug Deliverer
Cornell researchers have created a pore in “Cornell Dots” – brightly glowing nanoparticles nicknamed C-Dots – that can carry medicine.
Friday, April 12, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos