Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Schizophrenia and Cannabis Use May Share Common Genes

Published: Friday, June 27, 2014
Last Updated: Friday, June 27, 2014
Bookmark and Share
Researchers found that people genetically pre-disposed to schizophrenia were more likely to use cannabis.

Genes that increase the risk of developing schizophrenia may also increase the likelihood of using cannabis, according to a new study led by King’s College London, published in Molecular Psychiatry.

Previous studies have identified a link between cannabis use and schizophrenia, but it has remained unclear whether this association is due to cannabis directly increasing the risk of the disorder.

The new results suggest that part of this association is due to common genes, but do not rule out a causal relationship between cannabis use and schizophrenia risk.

The study is a collaboration between King’s and the Queensland Institute of Medical Research in Australia, partly funded by the UK Medical Research Council (MRC).

Mr Robert Power, lead author from the MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre at the Institute of Psychiatry at King’s, says: “Studies have consistently shown a link between cannabis use and schizophrenia. We wanted to explore whether this is because of a direct cause and effect, or whether there may be shared genes which predispose individuals to both cannabis use and schizophrenia.”

Cannabis is the most widely used illicit drug in the world, and its use is higher amongst people with schizophrenia than in the general population. Schizophrenia affects approximately 1 in 100 people and people who use cannabis are about twice as likely to develop the disorder.

The most common symptoms of schizophrenia are delusions (false beliefs) and auditory hallucinations (hearing voices). Whilst the exact cause is unknown, a combination of physical, genetic, psychological and environmental factors can make people more likely to develop the disorder.

Previous studies have identified a number of genetic risk variants associated with schizophrenia, each of these slightly increasing an individual’s risk of developing the disorder.

The new study included 2,082 healthy individuals of whom 1,011 had used cannabis. Each individual’s ‘genetic risk profile’ was measured - that is, the number of genes related to schizophrenia each individual carried.

The researchers found that people genetically pre-disposed to schizophrenia were more likely to use cannabis, and use it in greater quantities than those who did not possess schizophrenia risk genes.

Power says: “We know that cannabis increases the risk of schizophrenia. Our study certainly does not rule this out, but it suggests that there is likely to be an association in the other direction as well – that a pre-disposition to schizophrenia also increases your likelihood of cannabis use.”

“Our study highlights the complex interactions between genes and environments when we talk about cannabis as a risk factor for schizophrenia. Certain environmental risks, such as cannabis use, may be more likely given an individual’s innate behaviour and personality, itself influenced by their genetic make-up. This is an important finding to consider when calculating the economic and health impact of cannabis.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Genetic Variant Linked to Risk of Stroke and Heart Attack
Findings suggest a new genetic link caused by a variation in glycoprotein IIIa.
Saturday, July 05, 2014
First Genetic Link Discovered to Difficult-to-Diagnose Breast Cancer Sub-Type
Study gives researchers important clues to the genetic causes of particular kind of breast cancer.
Tuesday, April 29, 2014
Scientific News
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Five Genetic Regions Implicated In Cystic Fibrosis Severity
An international consortium of researchers conducted the largest-ever CF genome-wide analysis to find new therapeutic targets.
Greater Understanding Of Polycystic Ovary Syndrome
A new genetic study of over 200,000 women reveals the underlying mechanisms of polycystic ovary syndrome, as well as potential interventions.
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos