Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sequencing Efforts Miss DNA Crucial to Bacteria’s Disease Causing Power

Published: Thursday, July 03, 2014
Last Updated: Thursday, July 03, 2014
Bookmark and Share
New research suggests that current sequencing protocols overlook crucial bits of information: isolated pieces of DNA floating outside the bacterial chromosome.

Genomic sequencing is supposed to reveal the entire genetic makeup of an organism. For infectious disease specialists, the technology can be used to analyze a disease-causing bacterium to determine how much harm it is capable of causing and whether or not it will be resistant to antibiotics.

“Extensive sequencing of chromosomal DNA has been performed for a variety of pathogenic organisms, but these sequences fail to uncover the presence of DNA elements in the cell’s cytoplasm. As a result, the DNA profile of a pathogenic bacteria may be incomplete,” says Vincent Fischetti, head of the Laboratory of Bacterial Pathogenesis and Immunology. “We have now devised a way to identify these elements.”

Extrachromosomal DNA can include bacteria-infecting viruses, known as phages, and strands of self-replicating DNA, known as plasmids, often picked up from other bacteria. These phages and plasmids can easily move between bacterial cells, and scientists have known for some time that, as a result, these so-called mobile genetic elements can play important roles in virulence and antibiotic resistance.

This study focused on phages. Their activity outside the chromosomes has been poorly studied; most research has focused on phages integrated into bacterial chromosomes. Meanwhile, plasmids, which allow bacteria to share genes among themselves, are well studied.

“So far, no one has looked across a variety of strains of bacteria, as we have done with Staphylococcus aureus, to find these extrachromosomal phages that have potential to play an important role in disease,” says Bryan Utter a postdoc in the lab and the first author of the research published June 25 in PLoS ONE. Staphylococcus is a common bacterium that can cause serious or even fatal infections under certain circumstances.

Until now, an analysis of this scope wasn’t possible, because chromosomal DNA easily fragments and contaminates the sample during the process by which researchers prepare the extrachromosomal DNA, making them virtually impossible to identify and sequence.

“To solve this problem, we borrowed a tool from phages themselves: the enzymes these viruses use to break apart a phage-infected cell to release their progeny,” says Douglas Deutsch, a graduate student in the lab. These enzymes, a focus of research in the lab in the development of novel anti-infectives, are now being harnessed to gently extract the chromosomal DNA, while leaving behind any other genetic elements for analysis. Using this technique, they looked for extrachromosomal phages across 24 medically important strains of Staphylococci.

Not only did extrachromosomal phages appear widespread among these strains, but the researchers found evidence that these phages encode genes that can make the bacteria more dangerous.

For example, when the researchers decoded the complete sequence of one extrachromosomal circular phage from a disease-causing Staphylococcus, they identified a number of genes that may help this strain evade a host’s immune system and that could readily spread to other Staphylococcus bacteria. The researchers are now studying what role, if any, these viral genes play in this strain’s ability to cause disease.

The implications go beyond pathogenicity. Phage elements, including those not integrated into chromosomes, are part of a bacterial system for regulating genes. For instance, some of these phage elements can activate or silence bacterial genes by moving into or out of the chromosome. Within the Staphylococcus strains, the researchers found both transient elements as well as those residing permanently outside the chromosomes.

“By examining the DNA outside the bacterial chromosomes, you may get a better understanding of the dynamics by which these elements may mobilize thereby controlling microbial genes,” Fischetti says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How “Silent” Genetic Changes Drive Cancer
The researchers found that EXOSC2 expression is enhanced in metastatic tumors because their cells have increased levels of a tRNA called GluUUC.
Friday, June 03, 2016
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Tuesday, May 24, 2016
Common Virus Depends on MicroRNA
In the ongoing arms race between pathogenic viruses and the cells they infect, each side needs every advantage it can get. One way wily viruses can get a leg up is by subverting the microRNAs (miRNAs) of their host.
Tuesday, March 15, 2016
Skewed Expression of mRNA Fine Tunes of Protein Production
Long cast as a simple link between DNA and protein, messenger RNA has never offered much intrigue. But new research at The Rockefeller University suggests the molecule is up to something unexpected.
Friday, December 18, 2015
Fighting Sleeping Sickness
Researchers reveal method to manipulate trypanosomes in the mammalian bloodstream to acquire fly stage characteristics, a state that makes it easier for the host immune system to eliminate the invader.
Thursday, December 10, 2015
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Wednesday, August 26, 2015
Researchers Reveal Stomach Cancer Suppression Mechanism
A study reveals that the microRNA miR-7 suppresses gastric (stomach) cancer by inhibiting a key signaling pathway, and that this protective mechanism is compromised by the cancer-causing bacterium H. pylori.
Wednesday, August 12, 2015
Study Sheds Light on the Molecular Origins of Parkinson’s Disease
Researchers at The Rockefeller University and colleagues at Columbia University have identified two proteins they report may be important to Parkinson’s.
Wednesday, August 12, 2015
Gene Editing Technique Mastered In Mosquito That Transmits Deadly Diseases
Technique will help researchers learn more about the role of genes that are involved in mosquito propagation.
Monday, March 30, 2015
Genetic Mutation Helps Explain Why, In Rare Cases, Flu Can Kill
Study shows that immune response to flu can be affected by a rare genetic mutation.
Monday, March 30, 2015
Single Gene Mutation Eliminates ISG15
Single gene links susceptibility to rare infections with predisposition to autoimmune disease.
Tuesday, October 14, 2014
Modular Structure Enables TRCF Protein to Both Halt Transcription and Repair DNA
TRCF binds to both the DNA and the polymerase, and then pushes the polymerase off of the DNA.
Monday, February 27, 2006
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!