Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sequencing Efforts Miss DNA Crucial to Bacteria’s Disease Causing Power

Published: Thursday, July 03, 2014
Last Updated: Thursday, July 03, 2014
Bookmark and Share
New research suggests that current sequencing protocols overlook crucial bits of information: isolated pieces of DNA floating outside the bacterial chromosome.

Genomic sequencing is supposed to reveal the entire genetic makeup of an organism. For infectious disease specialists, the technology can be used to analyze a disease-causing bacterium to determine how much harm it is capable of causing and whether or not it will be resistant to antibiotics.

“Extensive sequencing of chromosomal DNA has been performed for a variety of pathogenic organisms, but these sequences fail to uncover the presence of DNA elements in the cell’s cytoplasm. As a result, the DNA profile of a pathogenic bacteria may be incomplete,” says Vincent Fischetti, head of the Laboratory of Bacterial Pathogenesis and Immunology. “We have now devised a way to identify these elements.”

Extrachromosomal DNA can include bacteria-infecting viruses, known as phages, and strands of self-replicating DNA, known as plasmids, often picked up from other bacteria. These phages and plasmids can easily move between bacterial cells, and scientists have known for some time that, as a result, these so-called mobile genetic elements can play important roles in virulence and antibiotic resistance.

This study focused on phages. Their activity outside the chromosomes has been poorly studied; most research has focused on phages integrated into bacterial chromosomes. Meanwhile, plasmids, which allow bacteria to share genes among themselves, are well studied.

“So far, no one has looked across a variety of strains of bacteria, as we have done with Staphylococcus aureus, to find these extrachromosomal phages that have potential to play an important role in disease,” says Bryan Utter a postdoc in the lab and the first author of the research published June 25 in PLoS ONE. Staphylococcus is a common bacterium that can cause serious or even fatal infections under certain circumstances.

Until now, an analysis of this scope wasn’t possible, because chromosomal DNA easily fragments and contaminates the sample during the process by which researchers prepare the extrachromosomal DNA, making them virtually impossible to identify and sequence.

“To solve this problem, we borrowed a tool from phages themselves: the enzymes these viruses use to break apart a phage-infected cell to release their progeny,” says Douglas Deutsch, a graduate student in the lab. These enzymes, a focus of research in the lab in the development of novel anti-infectives, are now being harnessed to gently extract the chromosomal DNA, while leaving behind any other genetic elements for analysis. Using this technique, they looked for extrachromosomal phages across 24 medically important strains of Staphylococci.

Not only did extrachromosomal phages appear widespread among these strains, but the researchers found evidence that these phages encode genes that can make the bacteria more dangerous.

For example, when the researchers decoded the complete sequence of one extrachromosomal circular phage from a disease-causing Staphylococcus, they identified a number of genes that may help this strain evade a host’s immune system and that could readily spread to other Staphylococcus bacteria. The researchers are now studying what role, if any, these viral genes play in this strain’s ability to cause disease.

The implications go beyond pathogenicity. Phage elements, including those not integrated into chromosomes, are part of a bacterial system for regulating genes. For instance, some of these phage elements can activate or silence bacterial genes by moving into or out of the chromosome. Within the Staphylococcus strains, the researchers found both transient elements as well as those residing permanently outside the chromosomes.

“By examining the DNA outside the bacterial chromosomes, you may get a better understanding of the dynamics by which these elements may mobilize thereby controlling microbial genes,” Fischetti says.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Editing Technique Mastered In Mosquito That Transmits Deadly Diseases
Technique will help researchers learn more about the role of genes that are involved in mosquito propagation.
Monday, March 30, 2015
Genetic Mutation Helps Explain Why, In Rare Cases, Flu Can Kill
Study shows that immune response to flu can be affected by a rare genetic mutation.
Monday, March 30, 2015
Single Gene Mutation Eliminates ISG15
Single gene links susceptibility to rare infections with predisposition to autoimmune disease.
Tuesday, October 14, 2014
Modular Structure Enables TRCF Protein to Both Halt Transcription and Repair DNA
TRCF binds to both the DNA and the polymerase, and then pushes the polymerase off of the DNA.
Monday, February 27, 2006
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!