Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Brain Tumor Invasion Along Blood Vessels May Lead to New Cancer Treatments

Published: Thursday, July 10, 2014
Last Updated: Thursday, July 10, 2014
Bookmark and Share
NIH-funded researchers find brain tumor cells disrupt the brain’s protective barrier, offering potential avenues for therapy.

Invading glioblastoma cells may hijack cerebral blood vessels during early stages of disease progression and damage the brain’s protective barrier, a study in mice indicates. This finding could ultimately lead to new ways to bring about the death of the tumor, as therapies may be able to reach these deadly cells at an earlier time point than was previously thought possible.

This research, published in Nature Communications, was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Glioblastoma, a type of aggressive brain tumor, is one of the most devastating forms of cancer. These tumors spread quickly and are difficult to treat because the brain protects itself from foreign substances.

The blood-brain barrier (BBB) is designed to stand in the way of harmful materials leaking into the brain and to regulate the transport of important molecules back and forth between the brain and the blood. One component of the BBB is close-fitting connections (called tight junctions) that form seals between the blood vessel’s endothelial cells. There are several other types of cells that cover the blood vessel, including specialized brain cells known as astrocytes, which have extensive projections, called endfeet, that cover 90 percent of the blood vessel surface.

The astrocytic endfeet release molecules that regulate the tight junctions between the endothelial cells. They also release specific chemicals that cause blood vessels to expand or contract, thereby regulating blood flow in the brain. As a whole, the BBB can be viewed as a smart protective wrapping that separates the blood from the brain.

Harald Sontheimer, Ph.D., from the University of Alabama at Birmingham, and his colleagues investigated the interactions between glioblastoma cells, astrocytes and cerebral blood vessels. They used mouse models of glioblastoma, fluorescent dyes and a variety of imaging techniques to see how tumor cells migrate through the brain and interact with other cells and blood vessels.

In the current study, Dr. Sontheimer’s team showed that almost all of the glioblastoma cells outside the main tumor mass were located in the space between the astrocytic endfeet and the blood vessel outer surface. By using the meshwork of small blood vessels as a scaffold, glioblastoma cells were able to migrate along the vessels and extract nutrients from the blood for themselves.

“The vast majority of tumor cells are associated with blood vessels. These cells appear to be using the vessels as highways to travel great distances within the brain,” said Dr. Sontheimer.

In addition, the findings revealed the glioblastoma cells hijacked control over the blood flow by taking it away from the astrocytes. As a result, tight junctions became loose, which led to a breakdown in the BBB. Dr. Sontheimer and his colleagues were surprised that very small groups of tumor cells, even individual cells, were sufficient to weaken the BBB early in the disease process.

“Evidence from our models suggests that early in the disease, invading tumor cells are not completely protected by the blood-brain barrier and may be more vulnerable to drugs delivered to the brain via the blood. If these findings hold true in humans, treatment with anti-invasive agents might be beneficial in newly diagnosed glioblastoma patients,” said Dr. Sontheimer. He added that localized breaches in the BBB may allow regionally precise delivery of drugs to attack tumor cells even in the earliest stage.

“Dr. Sontheimer’s findings provide us with new perspectives on how glioblastoma cells successfully invade within the brain and control blood flow to their advantage. These findings have the potential to change current approaches to treating glioblastoma,” said Jane Fountain, Ph.D., program director in charge of NINDS’ brain tumor portfolio.

Further research is needed to learn more about how the BBB is regulated and how brain tumor cells take over existing vessels to grow and spread. A better understanding of how tumor cells interact with the BBB may increase our ability to treat glioblastoma patients.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos