Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Brain Tumor Invasion Along Blood Vessels May Lead to New Cancer Treatments

Published: Thursday, July 10, 2014
Last Updated: Thursday, July 10, 2014
Bookmark and Share
NIH-funded researchers find brain tumor cells disrupt the brain’s protective barrier, offering potential avenues for therapy.

Invading glioblastoma cells may hijack cerebral blood vessels during early stages of disease progression and damage the brain’s protective barrier, a study in mice indicates. This finding could ultimately lead to new ways to bring about the death of the tumor, as therapies may be able to reach these deadly cells at an earlier time point than was previously thought possible.

This research, published in Nature Communications, was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Glioblastoma, a type of aggressive brain tumor, is one of the most devastating forms of cancer. These tumors spread quickly and are difficult to treat because the brain protects itself from foreign substances.

The blood-brain barrier (BBB) is designed to stand in the way of harmful materials leaking into the brain and to regulate the transport of important molecules back and forth between the brain and the blood. One component of the BBB is close-fitting connections (called tight junctions) that form seals between the blood vessel’s endothelial cells. There are several other types of cells that cover the blood vessel, including specialized brain cells known as astrocytes, which have extensive projections, called endfeet, that cover 90 percent of the blood vessel surface.

The astrocytic endfeet release molecules that regulate the tight junctions between the endothelial cells. They also release specific chemicals that cause blood vessels to expand or contract, thereby regulating blood flow in the brain. As a whole, the BBB can be viewed as a smart protective wrapping that separates the blood from the brain.

Harald Sontheimer, Ph.D., from the University of Alabama at Birmingham, and his colleagues investigated the interactions between glioblastoma cells, astrocytes and cerebral blood vessels. They used mouse models of glioblastoma, fluorescent dyes and a variety of imaging techniques to see how tumor cells migrate through the brain and interact with other cells and blood vessels.

In the current study, Dr. Sontheimer’s team showed that almost all of the glioblastoma cells outside the main tumor mass were located in the space between the astrocytic endfeet and the blood vessel outer surface. By using the meshwork of small blood vessels as a scaffold, glioblastoma cells were able to migrate along the vessels and extract nutrients from the blood for themselves.

“The vast majority of tumor cells are associated with blood vessels. These cells appear to be using the vessels as highways to travel great distances within the brain,” said Dr. Sontheimer.

In addition, the findings revealed the glioblastoma cells hijacked control over the blood flow by taking it away from the astrocytes. As a result, tight junctions became loose, which led to a breakdown in the BBB. Dr. Sontheimer and his colleagues were surprised that very small groups of tumor cells, even individual cells, were sufficient to weaken the BBB early in the disease process.

“Evidence from our models suggests that early in the disease, invading tumor cells are not completely protected by the blood-brain barrier and may be more vulnerable to drugs delivered to the brain via the blood. If these findings hold true in humans, treatment with anti-invasive agents might be beneficial in newly diagnosed glioblastoma patients,” said Dr. Sontheimer. He added that localized breaches in the BBB may allow regionally precise delivery of drugs to attack tumor cells even in the earliest stage.

“Dr. Sontheimer’s findings provide us with new perspectives on how glioblastoma cells successfully invade within the brain and control blood flow to their advantage. These findings have the potential to change current approaches to treating glioblastoma,” said Jane Fountain, Ph.D., program director in charge of NINDS’ brain tumor portfolio.

Further research is needed to learn more about how the BBB is regulated and how brain tumor cells take over existing vessels to grow and spread. A better understanding of how tumor cells interact with the BBB may increase our ability to treat glioblastoma patients.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
The Epigenetic Influences of Chronic Pain
Researchers at Drexel University College of Medicine are aiming to identify new molecular mechanisms involved in pain.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Mothers Obesity Could be Passed on in mtDNA
Obesity can predispose offspring in multiple generations to metabolic problems.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Naked Mole Rat Exhibits “Extraordinary” Cancer Resistance
Scientists are getting closer to understanding the anti-cancer mechanism of the naked mole rat by making induced pluripotent stem cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!