Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Tute Genomics Biomarker Discovery Platform to Support BYU Efforts

Published: Friday, July 25, 2014
Last Updated: Friday, July 25, 2014
Bookmark and Share
Brigham Young University to advance Alzheimer’s disease genetics research.

Tute Genomics has announced that its genome annotation and discovery platform will support Brigham Young University’s (BYU) efforts to advance Alzheimer’s disease genetics research. This collaboration involves analysis and interpretation of next-generation sequencing data from more than 1,000 exomes and genomes to identify new genetic variants associated with the disease.

“Collaboration is the key to discovering novel variants in genomics research, and Tute Genomics is honored to play a role in supporting this important work,” said Dr. Kai Wang, President of Tute Genomics, “This is an example of how our platform significantly enhances the ability for researchers to identify disease genes and variants from thousands of genomes.”

Dr. John “Keoni” Kauwe is leading a group of scientists from the BYU College of Life Sciences that is leveraging Tute Genomics in a large-scale effort to better understand the genetic basis of Alzheimer’s disease. The causes of this brain disease are still not fully understood and traditional treatments have so far proven unsuccessful. Dr. Kauwe’s group is looking to utilize Tute Genomics’ biomarker discovery platform to identify novel targets that may be used for therapeutic interventions.

“We have been extremely impressed with the Tute platform thus far, and we already have a number of research findings we are evaluating. We are excited to utilize Tute’s technology to support our novel approaches to finding genetic variants associated with Alzheimer’s disease using exome and whole genome sequence data,” said Dr. Kauwe.

The Alzheimer’s Genetic Analysis Group is a collaborative effort led by Dr. John Hardy at University College London. Other Principal Investigators in this group include Dr. Kauwe from BYU, Drs. Alison Goate and Carlos Cruchaga at the Washington University School of Medicine, and Dr. Andrew Singleton at the National Institutes of Health. Late last year this group discovered a novel genetic variant that doubles a person’s risk of developing the disease later in life. The study included families that had several members with Alzheimer’s. The scientists sequenced and compared genes of those individuals affected by the disease and those who were not. They were then able to identify variations in a gene that appeared in affected family members.

Another of their recent studies has helped lift the veil on some of the mystery surrounding the causes of Alzheimer’s. The research team analyzed data from more than 25,000 people and reported that a rare genetic mutation in TREM2, a gene with function in the immune and inflammatory response, increases the risk of Alzheimer’s disease.

“Dr. Kauwe and the Alzheimer’s Genetic Analysis Group are making exciting progress towards understanding the genetic underpinnings of Alzheimer’s disease. The first step towards effective treatments and an eventual cure is to fully understand the genetics and neurobiology of the disorder,” said Dr. Reid Robison, co-founder and CEO of Tute Genomics.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tute Genomics Platform Selected to Provide Clinical Interpretation for NextStepDx PLUS
Genetic testing service designed to detect genetic variants linked to autism spectrum disorders and other disorders of childhood development.
Saturday, July 12, 2014
Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos