Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tute Genomics Biomarker Discovery Platform to Support BYU Efforts

Published: Friday, July 25, 2014
Last Updated: Friday, July 25, 2014
Bookmark and Share
Brigham Young University to advance Alzheimer’s disease genetics research.

Tute Genomics has announced that its genome annotation and discovery platform will support Brigham Young University’s (BYU) efforts to advance Alzheimer’s disease genetics research. This collaboration involves analysis and interpretation of next-generation sequencing data from more than 1,000 exomes and genomes to identify new genetic variants associated with the disease.

“Collaboration is the key to discovering novel variants in genomics research, and Tute Genomics is honored to play a role in supporting this important work,” said Dr. Kai Wang, President of Tute Genomics, “This is an example of how our platform significantly enhances the ability for researchers to identify disease genes and variants from thousands of genomes.”

Dr. John “Keoni” Kauwe is leading a group of scientists from the BYU College of Life Sciences that is leveraging Tute Genomics in a large-scale effort to better understand the genetic basis of Alzheimer’s disease. The causes of this brain disease are still not fully understood and traditional treatments have so far proven unsuccessful. Dr. Kauwe’s group is looking to utilize Tute Genomics’ biomarker discovery platform to identify novel targets that may be used for therapeutic interventions.

“We have been extremely impressed with the Tute platform thus far, and we already have a number of research findings we are evaluating. We are excited to utilize Tute’s technology to support our novel approaches to finding genetic variants associated with Alzheimer’s disease using exome and whole genome sequence data,” said Dr. Kauwe.

The Alzheimer’s Genetic Analysis Group is a collaborative effort led by Dr. John Hardy at University College London. Other Principal Investigators in this group include Dr. Kauwe from BYU, Drs. Alison Goate and Carlos Cruchaga at the Washington University School of Medicine, and Dr. Andrew Singleton at the National Institutes of Health. Late last year this group discovered a novel genetic variant that doubles a person’s risk of developing the disease later in life. The study included families that had several members with Alzheimer’s. The scientists sequenced and compared genes of those individuals affected by the disease and those who were not. They were then able to identify variations in a gene that appeared in affected family members.

Another of their recent studies has helped lift the veil on some of the mystery surrounding the causes of Alzheimer’s. The research team analyzed data from more than 25,000 people and reported that a rare genetic mutation in TREM2, a gene with function in the immune and inflammatory response, increases the risk of Alzheimer’s disease.

“Dr. Kauwe and the Alzheimer’s Genetic Analysis Group are making exciting progress towards understanding the genetic underpinnings of Alzheimer’s disease. The first step towards effective treatments and an eventual cure is to fully understand the genetics and neurobiology of the disorder,” said Dr. Reid Robison, co-founder and CEO of Tute Genomics.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tute Genomics Platform Selected to Provide Clinical Interpretation for NextStepDx PLUS
Genetic testing service designed to detect genetic variants linked to autism spectrum disorders and other disorders of childhood development.
Saturday, July 12, 2014
Scientific News
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Gene That Lowers Heart Attack Risk Identified
Individuals with a rare twelve-letter deletion from a gene on chromosome 17 have significantly reduced non-HDL cholesterol levels and a 35% lower than average risk of heart disease.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!