Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Computer Model Reveals Cancer's Energy Source

Published: Tuesday, August 19, 2014
Last Updated: Tuesday, August 19, 2014
Bookmark and Share
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.

A computer model study reveals - for the first time - details of an energy-creating process vital and unique to cancer cells. The research holds promise for new interventions and for personalizing cancer treatments based on individual needs.

The findings, which will revise basic biochemistry textbooks, focused on the energy-making process in cancer cells known as the Warburg Effect.

The Cornell-led study, published July 9 in the journal eLife, revealed that some of the enzymes thought to have no effect on the Warburg Effect, in fact, play a large role: An enzyme called GAPDH influences many parts of a cancer cell’s energy-making pathway.

“Our findings open opportunities for new ways to intervene in the Warburg Effect,” said Jason Locasale, the paper’s senior author and assistant professor of nutritional sciences in Cornell’s College of Agricultural and Life Sciences. Alexander Shestov, a former senior research associate, and Xiaojing Liu, a postdoctoral fellow, both in Locasale’s lab, are the paper’s lead authors. The results also “provide glimpses into whether we have predictive capacity to discern if treatments might be working,” Locasale added.

All multicellular organisms evolved pathways that take nutrients, sugars and oxygen and make energy through respiration and chemical processes. In normal cells, this energy-making process is known as oxidative phosphorylation. But when cells evolve cancerous properties and grow uncontrollably, they instead ferment their sugars to create energy even in the presence of oxygen. This process is called aerobic glycolysis, or the Warburg Effect.

The new findings are an important step toward developing a drug that affects only fermentation and not the normal metabolism of glucose, thereby depriving cancer cells of energy. The new model lays groundwork for predicting whether treatments will be effective based on an individual’s unique metabolism.

Still, very few details have been known about the Warburg Effect. “We can now systematically perturb anything in the [computer] model and identify important components” of the Warburg Effect, Locasale said.

Dating back to work by Efraim Racker, a Cornell researcher who made seminal discoveries in the area in the 1970s, followed by advances in cancer and genetic research, it is “known now that almost every cancer gene has some capacity to induce the Warburg Effect,” making it fundamental to proliferative diseases, Locasale said.

Currently, the Warburg Effect is used in clinical practice to diagnose and monitor cancer. Doctors inject patients with radioactive glucose and then watch where it is consumed; tumors are a major source of consumption. Researchers are also exploring whether dietary interventions with less sugar and the use of diabetes drugs that lower glucose may impact the Warburg Effect to treat cancer.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
For Cancer Patients, Sugar-Coated Cells are Deadly
Paszek’s lab will focus on developing high-resolution microscopy to further study cell membrane-related cancer mechanisms.
Friday, June 27, 2014
Shark, Human Proteins are Surprisingly Similar
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.
Friday, December 06, 2013
Gold-Plated Nano-Bits Find, Destroy Cancer Cells
Scientists have merged tiny gold and iron oxide particles, then added antibody guides to steer them through the bloodstream toward colorectal cancer cells.
Monday, October 21, 2013
Using Genes to Rescue Animal and Plants from Extinction
With estimates of losing 15 to 40 percent of the world’s species over the next four decades researchers whether science should employ genetic engineering to the rescue.
Friday, September 27, 2013
Dad’s Genes Build Placentas
Though placentas support the fetus and mother, it turns out that the organ grows according to blueprints from dad.
Monday, August 12, 2013
Physicists Tease out Twisted Torques of DNA
Like an impossibly twisted telephone cord, DNA, the molecule that encodes genetic information, also often finds itself twisted into coils.
Monday, July 01, 2013
Expelled DNA that Traps Toxins May Backfire in Obese
The body’s most powerful immune cells may have a radical way of catching their prey that could backfire on people who are overweight.
Wednesday, June 19, 2013
Genetic Switches Play Big Role in Human Evolution
Study offers further proof that the divergence of humans from chimpanzees was profoundly influenced by mutations to DNA sequences.
Wednesday, June 12, 2013
Genome Offers Clues to Amphibian-Killing Fungus
A fungus that has decimated amphibians globally is much older than previously thought.
Thursday, May 30, 2013
Scientists Find Clues to Some Inherited Heart Diseases
Cornell researchers have uncovered the basic cell biology that helps explain heart defects found in diseases known as laminopathies.
Tuesday, May 07, 2013
Scientists Develop World's Smallest Drug Deliverer
Cornell researchers have created a pore in “Cornell Dots” – brightly glowing nanoparticles nicknamed C-Dots – that can carry medicine.
Friday, April 12, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Scientific News
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos