Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Utah Researchers Confirm Chromosome may Harbor Autism Gene

Published: Wednesday, January 18, 2006
Last Updated: Wednesday, January 18, 2006
Bookmark and Share
Researchers have ruled out one gene that appeared to be a good candidate for being linked to autism.

Using technology that allows DNA from thousands of genes to be collected and surveyed on a 3 x 1½-inch chip, University of Utah medical researchers have confirmed that a region on a single chromosome probably harbors a gene that causes autism.

The researchers at the U School of Medicine made the finding by tracing variations in the DNA of an extended Utah family that has a high occurrence of the disorder and whose members are descended from one couple.

As part of the study, the researchers also ruled out one gene that appeared to be a good candidate for being linked to autism. They're now looking at other genes for a connection to the disorder.

Published in Human Heredity online, the study is part of the Utah Autism Research Project. The researchers are interested in finding more families with a history of autism to join the study.

The just-published research confirms Finnish studies of families that linked autism to the same region on chromosome 3, according to principal author Hilary Coon, Ph.D., research associate professor of psychiatry.

In fact, the results of the U of U research were surprisingly similar to the Finnish studies, Coon said.

"It was remarkable to confirm the Finnish studies," she said. "Our results were so close to their evidence, we thought it was important."

The study involved 31 members of a family of Northern European ancestry, seven of whom have autism or an autism-related disorder. The family members are part of the Utah Population Database.

The researchers used a gene chip similar to a microarray to search for genetic markers of autism.

They used a coated glass chip from Affymetrix, Inc. This chip has 10,000 short segments of DNA with known gene sequence variations, called single nucleotide polymorphisms, attached to 3/8 by 3/8-inch area.

The DNA strands of the family members were broken up and then bonded to the DNA on the chip, allowing researchers to compare the variations in the SNPs of the different DNA on an extremely fine scale.

The chance of the same variants of SNPs in a particular region on a chromosome being passed through several generations from a founding couple to multiple affected family members is slight.

When such identical blocks of SNPs are found, the chromosomal region often is a good candidate for being linked to a disease.

Other studies, including the Finnish ones, have found a high degree of evidence linking chromosome 3 to autism, so Coon and the other U researchers began their search on that chromosome.

The first region of the chromosome they looked at contained 106 SNPs, 70 of which strongly indicated a gene in that region being linked to autism.

One gene, FXR1, appeared to be a likely candidate for a link to autism. FXR1 is similar to the X-chromosome Fragile X gene, FMR1.

Mutations in FMR1 cause Fragile X Syndrome, an inherited condition that can cause mental impairments ranging from learning disabilities to severe cognitive problems.

Fragile X syndrome has been shown to overlap with autism, and because FXR1 is similar to the gene that causes the syndrome, U researchers suspected FXR1 might be linked to autism. But after analyzing the entire coding sequence of FXR1, the researchers found no alterations in the gene likely to contribute to autism.

Based on statistical evidence, they're now looking at other genes. But evidence that a gene on a particular region of chromosome 3 is linked to the disorder doesn't preclude other genes from being a cause of autism, according to Coon.

"We're just looking for the needle in the haystack," Coon said.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Tuesday, July 19, 2016
New Tool Could Change How Infectious Diseases Are Diagnosed
Scientists at the University of Utah School of Medicine, ARUP Laboratories, and IDbyDNA, Inc., have developed ultra-fast, meta-genomics analysis software called Taxonomer that dramatically improves the accuracy and speed of pathogen detection.
Tuesday, May 31, 2016
A Gene for New Species is Identified
A University of Utah-led study identified a long-sought “hybrid inviability gene” responsible for dead or infertile offspring when two species of fruit flies mate with each other.
Monday, December 21, 2015
New Way to Find DNA Damage
University of Utah chemists devised a new way to detect chemical damage to DNA that sometimes leads to genetic mutations responsible for many diseases, including various cancers and neurological disorders.
Monday, November 09, 2015
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Monday, August 03, 2015
First Evidence of Virus in Cancerous Prostate Cells
A type of virus that causes leukemia and sarcomas in animals has been found for the first time in malignant human prostate cancer cells.
Tuesday, September 08, 2009
Sperm’s Genes Packaged with Instructions for Development
New research shows that a father’s sperm passes along a previously unrecognized set of instructions that helps guide the early development of his children.
Wednesday, June 17, 2009
Newly Found Enzymes may Play Early Role in Cancer
The manipulation of these newly found genes might lead to targeted therapies aimed at slowing or preventing the onset of tumors.
Tuesday, December 30, 2008
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
Ovarian Cancer Insight
Study showed tumours release cytokines to attract macrophages, which secrete growth factors that in turn promote tumour growth.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Questioning the Safety of Selenium to Combat Cancer
Research indicates the need for change in practice as selenium supplements cannot be recommended for preventing colorectal cancer.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
Leukaemia Cell Movement Gives Clues to Tackling Treatment-Resistant Disease
Researchers at Imperial College London have suggested that the act of moving itself may help the cells to survive, possibly through short-lived interactions with an array of our own cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos