Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

"Land of the Ever-Young" Gene Reprogrammes Cells

Published: Monday, June 19, 2006
Last Updated: Thursday, June 22, 2006
Bookmark and Share
A team of scientists at the Institute for Stem Cell Research investigated the switching of adult cell types into embryonic stem cells after cell fusion.

University of Edinburgh scientists have discovered that the "ever-young" gene Nanog can cause adult cells to switch back to an embryonic state.

The finding, to be published in the journal Nature, is the first to show that a specific gene affects the reprogramming of a mature cell type into a native state.

The Edinburgh team believe this is a promising step towards understanding how to promote regeneration of damaged tissues and organs using a person's own cells.

The team of scientists, lead by Austin Smith at the Institute for Stem Cell Research, investigated the switching of adult cell types into embryonic stem cells after cell fusion.

Fusion is the combination of two cells to form a single hybrid cell. Like nuclear transfer, the cloning process used to create Dolly the sheep, cell fusion can reprogramme the genetic information in a specialised cell to a native embryonic state. But this occurs very rarely.

Says Austin Smith, "We set out to identify genes that could make reprogramming more efficient -our first candidate was Nanog because of its special role in formation of the early embryo and embryonic stem cells."

The Edinburgh scientists fused mouse embryonic stem cells with brain stem cells, a type of adult stem cell.

They found that the addition of Nanog resulted in a massive increase in the numbers of hybrid cells, all of which behaved like embryonic stem cells.

Most importantly the hybrid cells showed the capacity to make many different cell types, such as heart and gut.

"This means that the genetic programme of the brain cells has been erased and replaced by the unspecialised programme of an early embryo cell," says Jose Silva, first author of this study.

Jose adds, "The effect of Nanog is remarkable. All of the hybrid cells become fully converted to embryonic stem cells. If we can figure out how Nanog does this, it may become possible to switch cell types without fusion or cloning."

However, the Edinburgh team must also identify at least one other key gene. "Nanog has great power," says Austin Smith, "but it does not work in isolation, only in partnership with other genes present in embryonic stem cells."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Risk of Brain Injury is Genetic
Link between injury to the developing brain and common variation in genes identified.
Tuesday, May 20, 2014
University of Edinburgh Purchases Arrayjet Microarray Spotter
The spotter increases throughput capacity and performance essential to meet the increasing demand for high quality microarrays.
Tuesday, June 20, 2006
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!