" "
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

"Land of the Ever-Young" Gene Reprogrammes Cells

Published: Monday, June 19, 2006
Last Updated: Thursday, June 22, 2006
Bookmark and Share
A team of scientists at the Institute for Stem Cell Research investigated the switching of adult cell types into embryonic stem cells after cell fusion.

University of Edinburgh scientists have discovered that the "ever-young" gene Nanog can cause adult cells to switch back to an embryonic state.

The finding, to be published in the journal Nature, is the first to show that a specific gene affects the reprogramming of a mature cell type into a native state.

The Edinburgh team believe this is a promising step towards understanding how to promote regeneration of damaged tissues and organs using a person's own cells.

The team of scientists, lead by Austin Smith at the Institute for Stem Cell Research, investigated the switching of adult cell types into embryonic stem cells after cell fusion.

Fusion is the combination of two cells to form a single hybrid cell. Like nuclear transfer, the cloning process used to create Dolly the sheep, cell fusion can reprogramme the genetic information in a specialised cell to a native embryonic state. But this occurs very rarely.

Says Austin Smith, "We set out to identify genes that could make reprogramming more efficient -our first candidate was Nanog because of its special role in formation of the early embryo and embryonic stem cells."

The Edinburgh scientists fused mouse embryonic stem cells with brain stem cells, a type of adult stem cell.

They found that the addition of Nanog resulted in a massive increase in the numbers of hybrid cells, all of which behaved like embryonic stem cells.

Most importantly the hybrid cells showed the capacity to make many different cell types, such as heart and gut.

"This means that the genetic programme of the brain cells has been erased and replaced by the unspecialised programme of an early embryo cell," says Jose Silva, first author of this study.

Jose adds, "The effect of Nanog is remarkable. All of the hybrid cells become fully converted to embryonic stem cells. If we can figure out how Nanog does this, it may become possible to switch cell types without fusion or cloning."

However, the Edinburgh team must also identify at least one other key gene. "Nanog has great power," says Austin Smith, "but it does not work in isolation, only in partnership with other genes present in embryonic stem cells."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Risk of Brain Injury is Genetic
Link between injury to the developing brain and common variation in genes identified.
Tuesday, May 20, 2014
University of Edinburgh Purchases Arrayjet Microarray Spotter
The spotter increases throughput capacity and performance essential to meet the increasing demand for high quality microarrays.
Tuesday, June 20, 2006
Scientific News
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Genetically Mapping the Most Lethal E.Coli Strains
New approach could lead to fewer deaths, and new treatments.
Pumpjack" Mechanism for Splitting and Copying DNA
High-resolution structural details of cells' DNA-replicating proteins offer new insight into how these molecular machines function
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
The Spice of Life
Scientists discover important genetic source of human diversity.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!