Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer Cells More Likely to Genetically Mutate

Published: Friday, February 23, 2007
Last Updated: Friday, February 23, 2007
Bookmark and Share
Researcher at University of Washington find that the cells who become cancerous can also become 100 times more likely to genetically mutate than regular cells.

When cells become cancerous, they also become 100 times more likely to genetically mutate than regular cells, researchers have found.

The findings may explain why cells in a tumor have so many genetic mutations, but could also be bad news for cancer treatments that target a particular gene controlling cancer malignancy.

The research was led by Dr. Lawrence Loeb, professor of pathology and biochemistry at the University of Washington School of Medicine  in Seattle. Loeb presented his research at the meeting of the American Association for the Advancement of Science in San Francisco.

Most types of cancer are believed to begin with a random genetic mutation that makes a normal cell go horribly away. This is followed by mutations, which endow the cancer cells with properties allowing them to grow without normal controls to become a tumor. These mutated genes would be targets for chemotherapy.

But Loeb had another idea that he originally hatched many years ago - what if the cancer cells changed somehow, and became much more likely to mutate? These "mutator" cells would develop dangerous genetic mutations at a much faster rate than normal cells, which might account for the high number of mutations seen in tumor cells.

Since the technology of cancer genetics has dramatically improved, Loeb and his colleagues have only recently been able to test this hypothesis. They found that tumor tissue had random mutation rates up to 100 times higher than normal tissue from the same patient. The mutator hypothesis seems to be correct.

Now for the bad news: if cancer cells do indeed become mutator cells, traditional chemotherapy and other drugs may never be very effective against advanced tumors.

"This is very bad news, because it means that cancer cells in a tumor will have mutations that protect them from therapeutics," Loeb explained.

Loeb believes this research may eventually help physicians determine the stage and malignancy of a tumor by testing the number of its mutations. The more mutations, the further along the tumor may be in its development to malignancy or metastasis.

Loeb's work may also lead to a discovery of why cancer cells are becoming mutator cells. If scientists understand what happens in a cancer cell that makes it become a mutator, they might be able to prevent that from happening in other cells, or slow down the mutation rate.

"The idea is that if you might normally get exposed to something in the environment at 20 years old that would give you cancer by age 55, then if we cut the mutation rate in half, you might not get cancer until age 90, and you may even die of something else before that," Loeb explained.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Microsatellites Linked to Cancer
DNA repeat stretches, called microsatellites, play a greater role in cancer progression and survival that previously thought.
Wednesday, October 05, 2016
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
Thursday, September 29, 2016
Mutations in DNA-Repair Gene Higher in Prostate Cancer
Men with aggressive prostate cancer have higher incidence of inherited DNA-repair gene mutations.
Friday, July 08, 2016
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Friday, February 12, 2016
Draining Speeds up Bioassays
New methodology means biological assays that once took hours could instead take minutes.
Thursday, January 14, 2016
$12-Million Awarded to Study the Human Genome in 4-D
Project seeks to understand how a 6.5 feet of DNA folds to fit inside a cell.
Tuesday, October 20, 2015
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Monday, October 05, 2015
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Wednesday, September 30, 2015
Genetic Errors Linked To Aging Underlie Leukemia That Develops After Cancer Treatment
New research by Daniel Link, MD, and colleagues at The Genome Institute at Washington University has revealed that mutations that accumulate randomly as a person ages can play a role in a fatal form of leukemia that develops after treatment for another cancer.
Wednesday, December 10, 2014
Genetically Identical Bacteria Can Behave in Radically Different Ways
Although a population of bacteria may be genetically identical, individual bacteria within that population can act in radically different ways.
Friday, January 03, 2014
Depletion of ‘Traitor’ Immune Cells Slows Cancer Growth in Mice
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably.
Wednesday, September 25, 2013
Breakthrough in Detecting DNA Mutations Could Help Treat Tuberculosis and Cancer
The slightest variation in a sequence of DNA can have profound effects.
Tuesday, July 30, 2013
Extra Chromosome 21 Removed from Down Syndrome Cell Line
Scientists have succeeded in removing the extra copy of chromosome 21 in cell cultures derived from a person with Down syndrome, a condition in which the body’s cells contain three copies of chromosome 21.
Monday, November 12, 2012
Chemical Makes Blind Mice See
Researchers who discovered the chemical are working on an improved compound that may someday allow people with degenerative blindness to see again.
Wednesday, August 01, 2012
Exome Sequencing of Health Condition Extremes Can Reveal Susceptibility Genes
Comparing the DNA from patients at the best and worst extremes of a health condition can reveal genes for resistance and susceptibility.
Tuesday, July 17, 2012
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!