Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First Individual Diploid Human Genome Published by Researchers at J. Craig Venter Institute

Published: Thursday, September 06, 2007
Last Updated: Thursday, September 06, 2007
Bookmark and Share
Sequence reveals that human to human variation is substantially greater than earlier estimates.

Researchers at the J. Craig Venter Institute (JCVI), along with collaborators at The Hospital for Sick Children (Sick Kids) in Toronto and the University of California, San Diego (UCSD), have published a genome sequence of an individual, J. Craig Venter, Ph.D., that covers both of his chromosome pairs (or diploid genome), one set being inherited from each of his parents.

Two other versions of the human genome currently exist—one published in 2001 by Dr. Venter and colleagues at Celera Genomics, and another at the same time by a consortium of government and foundation-funded researchers. These genomes were not of any single individual, but rather were a mosaic of DNA sequences from various donors. In the case of Celera it was a consensus assembly from five individuals, while the publicly-funded version was based on patching together sequences from over 100 anonymous human sources. Both versions greatly underestimated human genetic diversity.

This new genome (called HuRef) represents the first time a true diploid genome from one individual—Dr. Venter, has been published. The research is available in the open access public journal, PLoS Biology.

Researchers at the JCVI have been sequencing and analyzing this version of Dr. Venter’s genome since 2003. Building on reanalyzed data from Dr. Venter’s genome that constituted 60% of the previously published Celera genome, the team had the goal of constructing a definitive reference human genome based on one individual. Using whole genome shotgun sequencing and highly accurate DNA sequencing using Sanger-based chemistry, the team produced additional data which constitutes the final 32 million sequence reads.

From the combined data of more than 20 billion base pairs of DNA, the team was able to assemble the majority of Dr. Venter's genome. Since this genome assembly uniquely catalogues the contributions of each of the parental chromosomes, for the first time the amount of variation existing between the two could be determined. Surprisingly, a higher than expected amount of genetic variation was found to exist between the two human chromosomes.

“Each time we peer deeper into the human genome we uncover more valuable insight into our intricate biology,” said Dr. Venter. “With this publication we have shown that human to human variation is five to seven-fold greater than earlier estimates proving that we are in fact more unique at the individual genetic level than we thought.”

He added, “It is clear however that we are still at the earliest stages of discovery about ourselves and only with additional sequencing of more individual genomes will we garner a full understanding of how our genes influence our lives.”

According to Samuel Levy, Ph.D., lead author and senior scientist at JCVI, “The ability to use unbiased, high throughput, sequencing methods coupled with advance computational analytic methods, enables us to characterize more comprehensively the wide variety of individual genetic variation. This offers us an unprecedented opportunity to study the prevalence and impact of these DNA variants on traits and diseases in human populations.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

JCVI Awarded 5 Year, Approximately $25 Million NIH Grant to Establish GCID
Center will utilize next generation genomic sequencing and analysis technologies to better understand infectious disease pathogens, and create resource for the research community.
Saturday, June 07, 2014
137 Marine Microbial Genomes from Cultured Samples are Sequenced
Research gives clearer picture of inhabitants living in ocean surface and gleans insights into how they adapt and survive.
Thursday, November 18, 2010
Castor Bean Genome Published by Research Team Including Scientists from the Venter Institute
A research team published the sequence and analysis of the castor bean genome in Nature Biotechnology.
Wednesday, August 25, 2010
Venter Institute Scientists Sequence 178 Microbial Reference Genomes Associated with the Human Body
Consortium members of the NIH's Human Microbiome project finds greater microbial diversity in human microbiome than previously known.
Friday, May 28, 2010
JCVI Researchers Clone and Engineer Bacterial Genomes in Yeast and Transplant Genomes Back into Bacterial Cells
New methods allow for engineering of bacterial chromosomes and the creation of modified bacterial species; should also play key role in boot up of synthetic cell.
Friday, August 21, 2009
J. Craig Venter Institute Researchers Publish Significant Advance in Genome Assembly Technology
Researchers publish paper describing a significant advance in genome assembly in which the team can now assemble the whole bacterial genome in one step.
Monday, December 08, 2008
JCVI Scientists Publish First Bacterial Genome Transplantation Changing One Species to Another
Research is important step in further advancing field of synthetic genomics
Thursday, June 28, 2007
J. Craig Venter Institute Announces Management Team and Organizational Structure
The Institute will no longer be organized under the two research divisions TIGR and TCAG, but will now encompass an administrative team and several research groups.
Friday, April 13, 2007
CEO of a Newly Expanded J. Craig Venter Institute to Speak at SEQNSYNTECH
Craig Venter became president and CEO of a newly expanded J. Craig Venter Institute after it absorbed the Institute for Genomic Research and the J. Craig Venter Science Foundation.
Monday, October 16, 2006
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!