Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

JCVI Scientists Publish First Bacterial Genome Transplantation Changing One Species to Another

Published: Thursday, June 28, 2007
Last Updated: Monday, October 15, 2007
Bookmark and Share
Research is important step in further advancing field of synthetic genomics

Researchers at the J. Craig Venter Institute (JCVI) have announced the results of work on genome transplantation methods allowing them to transform one type of bacteria into another type dictated by the transplanted chromosome.

The work, published online in the journal Science, by JCVI’s Carole Lartigue, Ph.D. and colleagues, outlines the methods and techniques used to change one bacterial species, Mycoplasma capricolum into another, Mycoplasma mycoides Large Colony (LC), by replacing one organism’s genome with the other one’s genome.

“The successful completion of this research is important because it is one of the key proof of principles in synthetic genomics that will allow us to realize the ultimate goal of creating a synthetic organism,” said J. Craig Venter, Ph.D., president and chairman, JCVI. “We are committed to this research as we believe that synthetic genomics holds great promise in helping to solve issues like climate change and in developing new sources of energy.”

The JCVI team devised several key steps to enable the genome transplantation. First, an antibiotic selectable marker gene was added to the M. mycoides LC chromosome to allow for selection of living cells containing the transplanted chromosome.

Then the team purified the DNA or chromosome from M. mycoides LC so that it was free from proteins (called naked DNA). This M. mycoides LC chromosome was then transplanted into the M. capricolum cells.

After several rounds of cell division, the recipient M. capricolum chromosome disappeared having been replaced by the donor M. mycoides LC chromosome, and the M. capricolum cells took on all the phenotypic characteristics of M. mycoides LC cells.

As a test of the success of the genome transplantation, the team used two methods — 2D gel electrophoresis and protein sequencing, to prove that all the expressed proteins were now the ones coded for by the M. mycoides LC chromosome.

Two sets of antibodies that bound specifically to cell surface proteins from each cell were reacted with transplant cells, to demonstrate that the membrane proteins switch to those dictated by the transplanted chromosome not the recipient cell chromosome. The new, transformed organisms show up as bright blue colonies in images of blots probed with M. mycoides LC specific antibody.

The group chose to work with these species of mycoplasmas for several reasons — the small genomes of these organisms which make them easier to work with, their lack of cell walls, and the team’s experience and expertise with mycoplasmas. The mycoplasmas used in the transplantation experiment are also relatively fast growing, allowing the team to ascertain success of the transplantation sooner than with other species of mycoplasmas.

According to Dr. Lartigue, “While we are excited by the results of our research, we are continuing to perfect and refine our techniques and methods as we move to the next phases and prepare to develop a fully synthetic chromosome.”

Genome transplantation is an essential enabling step in the field of synthetic genomics as it is a key mechanism by which chemically synthesized chromosomes can be activated into viable living cells.

The ability to transfer the naked DNA isolated from one species into a second microbial species paves the way for next experiments to transplant a fully synthetic bacterial chromosome into a living organism and if successful, “boot up” the new entity.

There are many important applications of synthetic genomics research including development of new energy sources and as means to produce pharmaceuticals, chemicals or textiles.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First Minimal Synthetic Bacterial Cell
Researchers at JCVI and SGI have designed and constructed of the first minimal synthetic bacterial cell, JCVI-syn3.0.
Tuesday, March 29, 2016
JCVI Awarded 5 Year, Approximately $25 Million NIH Grant to Establish GCID
Center will utilize next generation genomic sequencing and analysis technologies to better understand infectious disease pathogens, and create resource for the research community.
Saturday, June 07, 2014
137 Marine Microbial Genomes from Cultured Samples are Sequenced
Research gives clearer picture of inhabitants living in ocean surface and gleans insights into how they adapt and survive.
Thursday, November 18, 2010
Castor Bean Genome Published by Research Team Including Scientists from the Venter Institute
A research team published the sequence and analysis of the castor bean genome in Nature Biotechnology.
Wednesday, August 25, 2010
Venter Institute Scientists Sequence 178 Microbial Reference Genomes Associated with the Human Body
Consortium members of the NIH's Human Microbiome project finds greater microbial diversity in human microbiome than previously known.
Friday, May 28, 2010
JCVI Researchers Clone and Engineer Bacterial Genomes in Yeast and Transplant Genomes Back into Bacterial Cells
New methods allow for engineering of bacterial chromosomes and the creation of modified bacterial species; should also play key role in boot up of synthetic cell.
Friday, August 21, 2009
J. Craig Venter Institute Researchers Publish Significant Advance in Genome Assembly Technology
Researchers publish paper describing a significant advance in genome assembly in which the team can now assemble the whole bacterial genome in one step.
Monday, December 08, 2008
First Individual Diploid Human Genome Published by Researchers at J. Craig Venter Institute
Sequence reveals that human to human variation is substantially greater than earlier estimates.
Thursday, September 06, 2007
J. Craig Venter Institute Announces Management Team and Organizational Structure
The Institute will no longer be organized under the two research divisions TIGR and TCAG, but will now encompass an administrative team and several research groups.
Friday, April 13, 2007
CEO of a Newly Expanded J. Craig Venter Institute to Speak at SEQNSYNTECH
Craig Venter became president and CEO of a newly expanded J. Craig Venter Institute after it absorbed the Institute for Genomic Research and the J. Craig Venter Science Foundation.
Monday, October 16, 2006
Scientific News
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!