Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

BCM Human Microbiome Projects to Sequence 150 Bacteria, Sample Human Metagenome

Published: Tuesday, November 06, 2007
Last Updated: Tuesday, November 06, 2007
Bookmark and Share
A $2.3 million NHGRI grant will enable researchers to determine the genetic code of bacteria that colonize healthy humans and study the structure of microbial communities from five regions of the human body.

A $2.3 million grant from the National Human Genome Research Institute will enable researchers at the Baylor College of Medicine Human Genome Sequencing Center in Houston to determine the genetic code of bacteria that colonize healthy humans and study the structure of microbial communities from five regions of the human body.

The grant is part of the first phase of the Human Microbiome Project, a Roadmap initiative of the National Institutes of Health, which will request proposals for sequencing individual bacteria that normally inhabit various parts of the human body as well as metagenomic sequencing of the communities that these bacteria create.

The Roadmap grant adds to ongoing pilot Human Microbiome Projects at the BCM Human Genome Sequencing Center, supported by the National Human Genome Research Institute, one of the National Institutes of Health. Altogether the microbiome activities will produce reference sequences for 150 bacteria and sample the communities from the gut, vagina, skin, mouth and nose.

"The Human Microbiome Project seeks to describe the microbial community that colonizes you," said Dr. George Weinstock, co-director of the BCM Human Genome Sequencing Center and principal investigator of its bacterial sequencing activity. "It also seeks to understand how this community changes and correlate those changes with health, disease and new opportunities for early diagnosis."

The project also provides opportunities for new treatments and therapies that are either preventive or reactive to disease, said Weinstock, who has been a leader in developing this research area.

"That's the whole idea of probiotics – manipulating your microbial communities," he said. The studies could lead to new understanding of a host of diseases – even some kinds of cancers.

In many ways, the Human Microbiome Project is more ambitious than the Human Genome Project was at the beginning.

"Next generation DNA sequencing technology, which enables us to produce genetic sequences quickly and accurately, has finally reached a state where such a large project is possible," said Dr. Richard Gibbs, director of the BCM Human Genome Sequencing Center.

The effort will start with determining the genetic sequence of various bacteria that colonize humans, he said. Then researchers plan to look for variation among individuals and populations.

"Are there different types or combinations?" said Weinstock. "Is there one type of flora in this group of people and another in a different group?"

Then the project will transition into metagenomics – determining the genetic sequence of communities of bacteria that colonize human beings.

"We are colonized by thousands of species of bacteria," said Weinstock. "There are only 20,000 or so genes in my genome and all my cells have the same genes. Each bacterium has on the order of 1,000 genes, but there are thousands of species of bacteria and each has different genes. That means there are millions of bacterial genes in you. Collectively, they are a metagenome. You carry them with you, and the activity of their genes affects you. We want to do the DNA sequencing on the community itself."

"One of the major selective forces in all evolution has been micro-organisms," said Weinstock. "Nothing has happened in evolution that didn't have microbes crawling all over it."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Protein 'Tubules' Free Avian Flu Virus from Immune Recognition
Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, researchers say.
Friday, November 07, 2008
Lack of Fragile X, Related Gene Disrupts Sleep
Deficiency of the FMR1 gene and a similar gene called FXR2 could account for sleep problems associated with inherited mental impairment.
Friday, June 27, 2008
Nature Mixes, Matches Genes to Keep Nerve Cells Straight
BCM researchers report that nature has to mix and match thousands of genes to generate the myriad types of neurons needed to assemble the brain and nervous system.
Thursday, June 12, 2008
Findings Indicate How Gene Transcription is Controlled in Embryonic Stem Cells
In a report that appears in the journal Nature Cell Biology, BCM researchers explain that association determines fate in embryonic stem cells.
Monday, May 05, 2008
Notch Controls Bone Formation and Strength
Notch, a protein that governs cell differentiation process in embryos, plays a critical role in bone formation and strength later in life.
Monday, February 25, 2008
Epilepsy Genes may Cancel Each Other
Inheriting two genetic mutations that can individually cause epilepsy might actually be "seizure-protective," according to Baylor College of Medicine researchers.
Tuesday, November 06, 2007
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos