Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mechanism by which Signaling Pathways Regulate Growth and Differentiation of Adult Muscle Stem Cells Revealed

Published: Thursday, December 13, 2007
Last Updated: Thursday, December 13, 2007
Bookmark and Share
Researchers shows how two signaling pathways work together to assemble components of the protein complexes responsible for muscle-specific transcription.

During muscle regeneration, which is a natural response to injury and disease, environmental cues cause adult muscle stem cells (satellite cells) to shift from dormancy to actively building new muscle tissue. Although the signaling pathways controlling muscle regeneration are fairly well known, how these signals lead to altered chromatin structure remains undiscovered.

A group of scientists at the Burnham Institute for Medical Research in La Jolla, CA, analyzed the mechanism by which certain cellular signaling cues cause epigenetic modifications when released within the regenerative microenvironment, thus controlling the expression of genes that regulate growth and differentiation of muscle stem cells that repair injured muscle.

In a recent publication in Molecular Cell, the scientific group, led by Pier Lorenzo Puri, MD, Ph.D., shows how two signaling pathways, PI3K/AKT and p38, work together to assemble components of the protein complexes responsible for muscle-specific transcription, and how each pathway is responsible for a distinct step in the transcription process.

Additionally, the team was able to pharmacologically separate these two steps, showing that selective interference with either cascade leads to incomplete assembly of protein complexes, thus preventing muscle-specific gene expression. The results point to possible pharmacological avenues for selective control of gene expression in adult muscle stem cells that may have therapeutic potential in regenerative medicine.

Dr. Puri is an Assistant Professor in the Tumor Development Program at the Burnham Institute for Medical Research. The study was conducted in collaboration with the Dulbecco Telethon Institute at Fondazione Santa Lucia/EBRI; Department of Surgery, University of Virginia, Charlottesville; Molecular Oncology Research Institute, Tufts-New England Medical Center; and The Whittier Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Creating Ideal Neural Cells for Clinical Use
New protocol differentiates human embryonic stem cells into committed neural precursor cells.
Tuesday, April 21, 2009
Creating Ideal Neural Cells for Clinical Use
New protocol differentiates human embryonic stem cells into committed neural precursor cells.
Tuesday, April 14, 2009
NextBio Life Science Search Engine Licensed by the Burnham Institute to Speed Research Across Public and Private Data
Under the agreement, every scientist at the Burnham Institute will gain access to the NextBio life science search engine.
Tuesday, February 05, 2008
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!