Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Reveals Why Certain Ovarian Cancers Develop Resistance to Platinum-Based Chemotherapy

Published: Wednesday, February 13, 2008
Last Updated: Wednesday, February 13, 2008
Bookmark and Share
Researchers identified a mechanism that explains why some recurrent ovarian tumors become resistant to treatment with commonly used platinum-based chemotherapy drugs.

A team of researchers led by Fred Hutchinson Cancer Research Center has identified a new mechanism that explains why some recurrent ovarian tumors become resistant to treatment with commonly used platinum-based chemotherapy drugs such as cisplatin and carboplatin. They describe their research online Feb. 10 in the journal Nature.

While these findings are based on the study of ovarian-cancer cells from women with inherited mutations in the BRCA2 gene, they also may help explain the mechanics of cisplatin resistance in ovarian-cancer patients with BRCA1-gene mutations. Together such genetic mistakes are thought to cause about 10 percent of ovarian cancers, according to senior author Toshiyasu (Toshi) Taniguchi, M.D., Ph.D.

"Because BRCA1 and BRCA2 have similar functions in terms of DNA repair, we may be able to generalize these findings for women with either mutation," said Taniguchi, an assistant member of the Hutchinson Center's Human Biology and Public Health Sciences divisions.

BRCA2 works to repair damaged DNA; inherited mutations in this gene disrupt that ability, which increases the risk of ovarian and breast cancer. At the same time, such mutations also make cancer cells more vulnerable to DNA-damaging agents such as cisplatin and carboplatin. While ovarian tumors initially respond very well to platinum-based chemotherapy, eventually between 70 percent and 80 percent of advanced-stage ovarian-cancer patients develop a resistance to these drugs.

"The majority of advanced-stage ovarian-cancer patients die due to acquired resistance to platinum-based drugs. It is a serious problem," he said.

Taniguchi and colleagues at the Hutchinson Center, University of Washington, Cedars-Sinai Medical Center and the Mayo Clinic have uncovered how such resistance occurs. They found that when exposed to cisplatin, some ovarian-cancer cells develop secondary mutations on their BRCA2 gene that restore the gene's ability to repair DNA. This restoration of gene function then makes the cancer cells resistant to chemotherapy.

"This event is unlike any previous mechanism of resistance to chemotherapy identified in cancers," said co-author Elizabeth Swisher, M.D., associate professor of medicine in the Department of Obstetrics and Gynecology and director of the Breast and Ovarian Cancer Prevention Program at the University of Washington.

"By identifying the cause of chemotherapy resistance in these cancers, we may be able to better predict who will respond to different chemotherapy agents and find novel ways to re-sensitize tumors to chemotherapy that otherwise would not have had a good response to treatment," Swisher said.

If women with recurrent ovarian cancer are found to have a secondary mutation on their BRCA2 gene, their cancer likely would be resistant not only to platinum-based compounds but also other drugs such as PARP inhibitors. "Testing whether relapsed tumors have a secondary mutation of BRCA2 may be important to predict clinical outcome," Taniguchi said.

The researchers suspect they may be able to generalize their findings regarding secondary mutations in BRCA2 to other DNA-repair genes, such as BRCA1, which may help explain drug resistance to a variety of cancers, including those of the breast, prostate and pancreas.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene in Mice Controls Risk-Taking Behavior in Humans
Scientists have studied mice with a single copy of the neuroD2 gene and found they had an impaired ability to form emotional memories and conditioned fear.
Wednesday, September 28, 2005
Scientific News
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos