Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Findings Indicate How Gene Transcription is Controlled in Embryonic Stem Cells

Published: Monday, May 05, 2008
Last Updated: Monday, May 05, 2008
Bookmark and Share
In a report that appears in the journal Nature Cell Biology, BCM researchers explain that association determines fate in embryonic stem cells.

Association determines fate in embryonic stem cells, said Baylor College of Medicine researchers in a report that appears in the current issue of the journal Nature Cell Biology.

"These findings provide models of how the embryonic stem cell is maintained in its flexible state," said Dr. Zhou Songyang, professor of biochemistry and molecular biology at BCM and senior author of the report. "It provides another hint as to how gene transcription is controlled in embryonic stem cells."

One aim of embryonic stem cell research is to understand how the cells determine whether they will keep dividing and maintain a pool of embryonic cells, or start the process of cellular differentiation that results in different cell types.

Songyang and his colleagues found that two critical embryonic cell proteins – Nanog and Oct4 – associate with specific components that are parts of transcription repression complexes. These complexes affect the way that genes are expressed and carry out their tasks in the cell.

A special complex called NODE (Nanog and Oct4-associated Deacetylase) contains a critical component called Mta1 along with histone deacetylases. NODE associates with Nanog and Oct4 to control the fate of embryonic stem cells, said Songyang.

Histones are critical parts of genomic DNA structures or chromatins, acting as "spools" around which the genetic material winds in the nucleus. The DNA wraps more tightly when deacetylase removes the acetyl tails from the histones. The tight wrapping makes it hard for genes to be transcribed into the message that allows them to carry out their roles in the cell.

"Think of it as the parts of a car," said Songyang.

"If you think of Nanog as the engine that drives it, you realize that the car still needs accessories like wheels, the tailpipe, etc. We are interested in the big machinery of which proteins (like Nanog) are the drivers. We want to understand the enzymatic activities of the complexes. Then we need to identify the individual parts and ask the big question: 'How do different parts work together and why do you need special parts?'”

"We noticed that there are many histone deacetylases," he said. "Nanog uses these proteins to control gene expression and maybe also the chromatin state. When there is deacetylation, the gene is in a passive state."

"The embryonic stem cell is always at the stage of deciding whether to divide (and make more embryonic stem cells) or to differentiate," Songyang said. "All the extrinsic and intrinsic signals make the life of the embryonic stem cell transient. In other words, it has to be ready to go down either road."

"It becomes an interesting question," said Songyang. "Such a demanding state of readiness may mean that the embryonic stem cell requires a different complex at the chromatin than the somatic (or differentiated cell)."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Protein 'Tubules' Free Avian Flu Virus from Immune Recognition
Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, researchers say.
Friday, November 07, 2008
Lack of Fragile X, Related Gene Disrupts Sleep
Deficiency of the FMR1 gene and a similar gene called FXR2 could account for sleep problems associated with inherited mental impairment.
Friday, June 27, 2008
Nature Mixes, Matches Genes to Keep Nerve Cells Straight
BCM researchers report that nature has to mix and match thousands of genes to generate the myriad types of neurons needed to assemble the brain and nervous system.
Thursday, June 12, 2008
Notch Controls Bone Formation and Strength
Notch, a protein that governs cell differentiation process in embryos, plays a critical role in bone formation and strength later in life.
Monday, February 25, 2008
Epilepsy Genes may Cancel Each Other
Inheriting two genetic mutations that can individually cause epilepsy might actually be "seizure-protective," according to Baylor College of Medicine researchers.
Tuesday, November 06, 2007
BCM Human Microbiome Projects to Sequence 150 Bacteria, Sample Human Metagenome
A $2.3 million NHGRI grant will enable researchers to determine the genetic code of bacteria that colonize healthy humans and study the structure of microbial communities from five regions of the human body.
Tuesday, November 06, 2007
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos