Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Lack of Fragile X, Related Gene Disrupts Sleep

Published: Friday, June 27, 2008
Last Updated: Friday, June 27, 2008
Bookmark and Share
Deficiency of the FMR1 gene and a similar gene called FXR2 could account for sleep problems associated with inherited mental impairment.

Mice deficient in the fragile X mental retardation 1 gene and a similar gene called fragile X-related gene 2 were found having no rhythm to their wake and sleep pattern.

Lack of both the fragile X syndrome gene and one that is related could account for sleep problems associated with the disorder, which is the common cause of inherited mental impairment, said a consortium of researchers led by scientists at Baylor College of Medicine in Houston. Their findings appear in a report in the current issue of the American Journal of Human Genetics.

Mice deficient in the fragile X mental retardation 1 gene (FMR1) and a similar gene called fragile X-related gene 2 (FXR2) have no rhythm to their wake and sleep pattern, said Dr. David Nelson, professor of molecular and human genetics at BCM and co-director of the Interdepartmental Program in Cell and Molecular Biology.

Normal mice have a sleep-wake cycle of just under 12 hours awake and 12 hours asleep. Exposed to light and dark, they are awake in the dark and asleep during the light because they are nocturnal animals.

If they are kept in the dark, their cycle reduces by about 10 minutes per sleep-wake period but remains fairly normal. When mice do not have either FMR1 or FXR2, they have a slightly shorter cycle but the difference is not dramatic.

"However, the double-mutants (those without both genes) have no rhythm at all," said Nelson. "This has never been seen in a mouse before." The animals, usually kept in a cage with a wheel on which they run when awake, sleep a little, run a little, sleep a little – but there is no rhythm to it.

The finding is important because parents whose children have autism or fragile X report problems getting their children to go to sleep and stay asleep. Fragile X is the most common known cause of autism.

While there are few studies on the topic, said Nelson, "the impression I have is that many fragile X patients have a period of time that's like an extended infancy when they don't settle into a typical sleep–wake period."

Understanding how the gene associated with fragile X affect the circadian clock or the sleep-wake cycle could help explain some of the symptoms experienced by patients, he said.

After ruling out the possibility that the animals without the two genes could not perceive light, Nelson collaborated with a group in The Netherlands to test whether the cell's "central clock" called the suprachiasmatic nucleus in the animals was normal. They concluded that the clock was normal but that somehow the expression of genes that govern it is altered in these mice.

"These genes (FMR1 and FXR2) are new players in the control of circadian (daily) rhythms," said Nelson. Currently, the genes are thought to have a role in translating RNAs (ribonucleic acids) – particularly at the receiving side of the connections between neurons called dendrites.

Dendrites are characterized by the fine branches that reach out into tissue. Scientists theorize that FMR1 and FXR2 may be involved in transporting the RNAs to the areas of those branches where the synapse is present.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Friday, May 20, 2016
Largest Genomic Study on Kidney Cancer
Understanding the complexity of cancer is a major goal of the scientific community, and for kidney cancer researchers this goal just got closer.
Wednesday, March 16, 2016
Largest Genomic Study on Kidney Cancer Brings Hope for More Effective Treatments
Researchers at Baylor College of Medicine have found that a pathway called immune checkpoint was most active in a subtype of clear cell kidney cancer that is typically very aggressive.
Tuesday, March 08, 2016
Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Protein 'Tubules' Free Avian Flu Virus from Immune Recognition
Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, researchers say.
Friday, November 07, 2008
Nature Mixes, Matches Genes to Keep Nerve Cells Straight
BCM researchers report that nature has to mix and match thousands of genes to generate the myriad types of neurons needed to assemble the brain and nervous system.
Thursday, June 12, 2008
Findings Indicate How Gene Transcription is Controlled in Embryonic Stem Cells
In a report that appears in the journal Nature Cell Biology, BCM researchers explain that association determines fate in embryonic stem cells.
Monday, May 05, 2008
Notch Controls Bone Formation and Strength
Notch, a protein that governs cell differentiation process in embryos, plays a critical role in bone formation and strength later in life.
Monday, February 25, 2008
Epilepsy Genes may Cancel Each Other
Inheriting two genetic mutations that can individually cause epilepsy might actually be "seizure-protective," according to Baylor College of Medicine researchers.
Tuesday, November 06, 2007
BCM Human Microbiome Projects to Sequence 150 Bacteria, Sample Human Metagenome
A $2.3 million NHGRI grant will enable researchers to determine the genetic code of bacteria that colonize healthy humans and study the structure of microbial communities from five regions of the human body.
Tuesday, November 06, 2007
Scientific News
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!