Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Circulating Tumor Cells can Reveal Genetic Signature of Dangerous Lung Cancers

Published: Friday, July 04, 2008
Last Updated: Friday, July 04, 2008
Bookmark and Share
MGH-developed device promises improvements in targeted therapy, treatment monitoring.

Massachusetts General Hospital (MGH) investigators have shown that an MGH-developed, microchip-based device that detects and analyzes tumor cells in the bloodstream can be used to determine the genetic signature of lung tumors, allowing identification of those appropriate for targeted treatment and monitoring genetic changes that occur during therapy.

A pilot study of the device called the CTC-chip will appear in the July 24 New England Journal of Medicine and is receiving early online release.

"The CTC-chip opens up a whole new field of studying tumors in real time,” says Daniel Haber, MD, director of the MGH Cancer Center and the study’s senior author.

“When the device is ready for larger clinical trials, it should give us new options for measuring treatment response, defining prognostic and predictive measures, and studying the biology of blood-borne metastasis, which is the primary method by which cancer spreads and becomes lethal.”

CTCs or circulating tumor cells are living solid-tumor cells found at extremely low levels in the bloodstream. Until the development of the CTC-chip by researchers from the MGH Cancer Center and BioMEMS (BioMicroElectroMechanical Systems) Resource Center, it was not possible to get information from CTCs that would be useful for clinical decision-making.

The current study was designed to find whether the device could go beyond detecting CTCs to helping analyze the genetic mutations that can make a tumor sensitive to treatment with targeted therapy drugs.

The CTC-chip was used to analyze blood samples from 27 patients – 23 who had EGFR mutations and 4 who did not – and CTCs were identified in samples from all patients. Genetic analysis of CTCs from mutation-positive tumors detected those mutations 92 percent of the time.

In addition to the primary mutation that leads to initial tumor development and TKI sensitivity, the CTC-chip also detected a secondary mutation associated with treatment resistance in some participants, including those whose tumors originally responded to treatment but later resumed growing.

“If tumor genotypes don’t remain static during therapy, it’s essential to know exactly what you’re treating at the time you are treating it,” says Haber.

“Biopsy samples taken at the time of diagnosis can never tell us about changes emerging during therapy or genotypic differences that may occur in different sites of the original tumor, but the CTC-chip offers the promise of noninvasive continuous monitoring.” Haber is the Kurt J. Isselbacher/Peter D. Schwartz Professor of Medicine at Harvard Medical School.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Evo-Engineered CRISPR-Cas9s Hit More Gene-Editing Targets
Scientists have engineered a more effective CRISPR- Cas9 system paving the way for more advanced applications.
Wednesday, June 24, 2015
Genetic Signals Reflect the Evolutionary Impact of Cholera
Study identifies regions of genome associated with cholera susceptibility in Bangladesh.
Monday, July 08, 2013
Powerful Gene-Editing Tool Appears to Cause Off-Target Mutations in Human Cells
Results indicate need to improve precision of CRISPR-Cas RNA-guided nucleases.
Wednesday, June 26, 2013
Mass. General, Duke Study Identifies Two Genes that Combine to Cause Rare Syndrome
Mutations in genes that regulate cellular metabolism found in families with ataxia, dementia and reproductive failure.
Monday, May 13, 2013
Gene Variation may Elevate Risk of Liver Tumor in Patients with Cirrhosis
A single alteration in the epidermal growth factor (EFG) gene may greatly increase the risk of developing hepatocellular carcinoma, researchers say.
Tuesday, January 08, 2008
Scientific News
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!