Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein 'Tubules' Free Avian Flu Virus from Immune Recognition

Published: Friday, November 07, 2008
Last Updated: Friday, November 07, 2008
Bookmark and Share
Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, researchers say.

A protein found in the virulent avian influenza virus strain called H5N1 forms tiny tubules in which it "hides" the pieces of double-stranded RNA formed during viral infection, which otherwise would prompt an antiviral immune response from infected cells, said Baylor College of Medicine researchers in an online report in the journal Nature.

Two domains or portions of the protein NS1 combine to form tiny tubules where double-stranded RNA is hidden from the immune system, said Dr. B. V. Venkataram Prasad, professor of biochemistry and molecular biology, molecular virology and microbiology at BCM and his student, Dr. Zachary A. Bornholdt.

"Once we confirm the importance of this structural information, we should be able to design drugs to block this action," said Prasad. "There are other things the protein could do to interfere with different immune mechanisms. We don't know if this is the only mechanism or if there are others that also come into play during influenza virus infection."

The two researchers had already recognized the importance of the protein NS1 in the virulence of influenza viruses and particularly, H5N1, a form of avian flu associated with more than half the deaths in a 2004 "bird flu" outbreak that resulted in 50 human cases and 36 deaths in Vietnam, China and Thailand.

In all but one case, experts ruled out human-to-human spread of the virus. In a previous report, Prasad and Bornholdt described the structure of an area of the protein called the effector domain. In this report, a series of elegant experiments designed and carried out over eight months by Bornholdt allowed the two scientists to "crystallize" the entire protein.

By doing this, they were able to determine its structure using a technique called X-ray crystallography. This technique enables scientists to determine the three-dimensional structure of proteins and other bio-molecules by scattering X-rays through a crystal of the molecule. They substantiated their structure with cryo-electron microscopy, which makes images of tiny frozen structures using an extremely powerful electron microscope.

That structure revealed a previously unsuspected idiosyncrasy of NS1 in H5N1 that could explain the virus' virulence. In most cases, when an infected cell is exposed to a virus, double-stranded RNA molecules are formed triggering a potent anti-viral response that involves production of interferon.

However, the two domains of NS1 in this H5N1 interact to form tiny tubules. The double-stranded RNA is hidden or sequestered in these structures. The cell never sees a significant length of the RNA and does not marshal its immune forces to the fight the virus. Prasad and Bornholdt believe also that cellular factor binding sites found on the surface of the tubules also play a role in fooling the immune system.

"This is only one structure," said Prasad. "We need to see if this holds up with other NS1 structures from other influenza viruses."

Bornholdt's technique for crystallizing the protein will prove valuable in pursuing this work, said Prasad.

"Is this a common mechanism for eluding the immune system?" he said. He said hopes to build a library to NS1 structures to facilitate future studies designed to fight influenza worldwide.

While H5N1 is not usually transmitted from human-to-human at this point, a small change in its genetic structure – perhaps an exchange of genes with a more easily transmitted flu virus – could change that, he said. Developing drugs to fight the virus could prove life-saving in a pandemic.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Baylor, DNAnexus Collaborate
Partnership sets out to develop HgV, a new iteration of HGSC's Mercury, a BCM-developed data processing and variant calling pipeline for analyzing and annotating next-generation sequencing data in research and clinical contexts.
Tuesday, June 23, 2015
Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Collaboration Unravels Novel Mechanism for Neurological Disorder
The novel gene (CLP1) associated with a neurological disorder affecting both the peripheral and central nervous systems.
Saturday, April 26, 2014
$3M NIH Grant Enables Baylor International HIV/AIDS Program
Researchers to study genetic differences of disease in sub-Saharan African children.
Wednesday, February 19, 2014
Baylor College of Medicine, Berry Genomics Co. Seek to Improve on Prenatal Genetic Tests
Teams aim to improve prenatal genetic testing by combining BCM’s expertise in using microarrays for DNA analysis and Berry’s non-invasive technology evaluating fetal DNA in maternal plasma.
Monday, January 07, 2013
Lack of Fragile X, Related Gene Disrupts Sleep
Deficiency of the FMR1 gene and a similar gene called FXR2 could account for sleep problems associated with inherited mental impairment.
Friday, June 27, 2008
Nature Mixes, Matches Genes to Keep Nerve Cells Straight
BCM researchers report that nature has to mix and match thousands of genes to generate the myriad types of neurons needed to assemble the brain and nervous system.
Thursday, June 12, 2008
Findings Indicate How Gene Transcription is Controlled in Embryonic Stem Cells
In a report that appears in the journal Nature Cell Biology, BCM researchers explain that association determines fate in embryonic stem cells.
Monday, May 05, 2008
Notch Controls Bone Formation and Strength
Notch, a protein that governs cell differentiation process in embryos, plays a critical role in bone formation and strength later in life.
Monday, February 25, 2008
Epilepsy Genes may Cancel Each Other
Inheriting two genetic mutations that can individually cause epilepsy might actually be "seizure-protective," according to Baylor College of Medicine researchers.
Tuesday, November 06, 2007
BCM Human Microbiome Projects to Sequence 150 Bacteria, Sample Human Metagenome
A $2.3 million NHGRI grant will enable researchers to determine the genetic code of bacteria that colonize healthy humans and study the structure of microbial communities from five regions of the human body.
Tuesday, November 06, 2007
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!