Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

J. Craig Venter Institute Researchers Publish Significant Advance in Genome Assembly Technology

Published: Monday, December 08, 2008
Last Updated: Monday, December 08, 2008
Bookmark and Share
Researchers publish paper describing a significant advance in genome assembly in which the team can now assemble the whole bacterial genome in one step.

Researchers at the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, have published a paper describing a significant advance in genome assembly in which the team can now assemble the whole bacterial genome, Mycoplasma genitalium, in one step from 25 fragments of DNA.

Lead author Daniel G. Gibson, Ph.D. and his team published their results in the online early edition of the journal Proceedings of the National Academy of Sciences (PNAS). The work was funded by the company Synthetic Genomics Inc. (SGI).

The publication represents major improvements in the methods that the team developed and described in their January 2008 publication of the first synthesis of a bacterial genome, M. genitalium. That publication outlined how the team synthesized in the laboratory the 582,970 base pair M. genitalium genome using the chemical building blocks of DNA-adenine (A), guanine (G), cytosine (C) and thymine (T).

While this was a big advance, it took several years to come to fruition and in the end was a tedious, multi- stage process in which the team had to build the genome a quarter at a time using the bacterium Escherichia coli to clone and produce the DNA segments.

During this building process the team found that E. coli had difficulty reproducing the large DNA segments, so they turned to the yeast Saccharomyces cerevisiae. They were then able to finish creating the synthetic bacterial genome using a method called homologous recombination.

Realizing how robustly yeast performed, the team wondered if it could be used to build the entire M. genitalium genome from multiple, smaller, overlapping segments of DNA. For this study the team used DNA fragments that ranged in size from about 17,000 base pairs to 35,000 base pairs. These relatively short segments were inserted into yeast cells in one step and through the mechanism of homologous recombination were assembled into the synthetic M. genitalium genome.

Several experiments were then done to confirm that all 25 pieces of the synthetic DNA had been correctly assembled in the yeast cells, and to show that the experiment could be successfully reproduced.

The JCVI team continues to explore the capacity for DNA assembly in yeast, and the various applications of this particular method. They conjecture that a variety of combinations of DNA molecules and genetic pathways could be manufactured in yeast, in essence turning yeast into a genetic factory for specifically designed and optimized processes.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First Minimal Synthetic Bacterial Cell
Researchers at JCVI and SGI have designed and constructed of the first minimal synthetic bacterial cell, JCVI-syn3.0.
Tuesday, March 29, 2016
JCVI Awarded 5 Year, Approximately $25 Million NIH Grant to Establish GCID
Center will utilize next generation genomic sequencing and analysis technologies to better understand infectious disease pathogens, and create resource for the research community.
Saturday, June 07, 2014
137 Marine Microbial Genomes from Cultured Samples are Sequenced
Research gives clearer picture of inhabitants living in ocean surface and gleans insights into how they adapt and survive.
Thursday, November 18, 2010
Castor Bean Genome Published by Research Team Including Scientists from the Venter Institute
A research team published the sequence and analysis of the castor bean genome in Nature Biotechnology.
Wednesday, August 25, 2010
Venter Institute Scientists Sequence 178 Microbial Reference Genomes Associated with the Human Body
Consortium members of the NIH's Human Microbiome project finds greater microbial diversity in human microbiome than previously known.
Friday, May 28, 2010
JCVI Researchers Clone and Engineer Bacterial Genomes in Yeast and Transplant Genomes Back into Bacterial Cells
New methods allow for engineering of bacterial chromosomes and the creation of modified bacterial species; should also play key role in boot up of synthetic cell.
Friday, August 21, 2009
First Individual Diploid Human Genome Published by Researchers at J. Craig Venter Institute
Sequence reveals that human to human variation is substantially greater than earlier estimates.
Thursday, September 06, 2007
JCVI Scientists Publish First Bacterial Genome Transplantation Changing One Species to Another
Research is important step in further advancing field of synthetic genomics
Thursday, June 28, 2007
J. Craig Venter Institute Announces Management Team and Organizational Structure
The Institute will no longer be organized under the two research divisions TIGR and TCAG, but will now encompass an administrative team and several research groups.
Friday, April 13, 2007
CEO of a Newly Expanded J. Craig Venter Institute to Speak at SEQNSYNTECH
Craig Venter became president and CEO of a newly expanded J. Craig Venter Institute after it absorbed the Institute for Genomic Research and the J. Craig Venter Science Foundation.
Monday, October 16, 2006
Scientific News
Gene Therapy for Metabolic Liver Diseases
Researchers have tested gene therapy in pigs from hereditary tyrosinemia type 1, with corrected liver cells being transplanted into the diseased liver.
Gene Terapy for Muscle Wasting Developed
New gene therapy could save millions of people suffering from muscle wasting disease.
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Discovering the First Farmers
Genetic analyses reveal a collection of highly distinct groups in the Near East and Europe at the dawn of agriculture.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!