Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>Resources>Application Notes>This Application Note
  Application Notes
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Micro Disease-Detecting Senor Created
Researchers at McMaster University have created a microscopic disease-detecting sensor that can turn on to detect trace amounts of substances.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Understanding Treatment Resistant Melanoma
Researchers have determined how advanced melanoma becomes resistant; a development toward developing treatments.
Investigating ‘Black Box’ of Human Genetics
Investigations into inactive X chromosomes have shown unusual DNA repeat elements are essential for maintaining 3D structure.
Liquid Biopsies: DNA Size Matters
Study finds circulating tumour DNA can be distinguished from healthy DNA through fragment size identification.
Protein Teams Activate T-Cells
Caltech researchers have discovered T-cell genetic switching is controlled by four proteins acting in a multi-tiered fashion.
Scroll Up
Scroll Down

Investigation of the stereoselectivity of an anti-amino acid antibody utilizing tryptophan fluorescence
Bookmark and Share

BMG LABTECH

The binding sites of proteins such as antibodies are known to often contain tryptophan (Trp) residues, whose fluorescent properties may be altered upon ligand binding. Conformational changes within the binding site or simply the presence of the ligand can result in either fluorescence quenching or enhancement, which may be utilized to quantitatively investigate protein-ligand interactions. We have previously described the production of highly stereoselective antibodies to amino acids. These antibodies have been used in a variety of analytical techniques for the sensitive detection of enantiomeric impurities and for enantiomer separation. The objective of this study was to test if tryptophan fluorescence can be used to determine the affinity of an anti-D-amino acid antibody toward a variety of standard and non-standard amino acids. In order to examine the utility of BMG LABTECH’s FLUOstar for measuring Trp fluorescence, experimental conditions were first optimized using the free amino acid as analyte.

Further Information


Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!