Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

BGI Tech Develops Whole Exome Sequencing Analysis of FFPE DNA Samples to Accelerate Biomedical Research

Published: Friday, September 21, 2012
Last Updated: Friday, September 21, 2012
Bookmark and Share
Achieving optimization of FFPE DNA library construction with DNA down to 200 ng.

BGI Tech Solutions Co., Ltd., a subsidiary company of BGI, announced today that they have achieved whole exome sequencing analysis of total degraded DNA as low as 200 ng from formalin fixed paraffin embedded (FFPE) samples. This advancement enables researchers to efficiently uncover the genetic information from FFPE disease samples such as cancers and infectious diseases, with the advantages of high reliability, accuracy and fast turnaround time.

FFPE samples are the most common biological materials for disease diagnoses and clinical studies. Especially in cancer research, millions of FFPE archival cancer tissue samples provide an enormous and invaluable repository of information, which hold a wealth of data for the discovery of biomarkers, drug development as well as diseases diagnosis and treatment.

However, during the FFPE sample preparation and storage process, the effect of formaldehyde on nucleic acids is detrimental, which can induce modification of nucleotide molecules, such as DNA damage, DNA-protein cross-links (DPC), among others. This may lay problems for researchers to get enough high-quality DNA from these FFPE samples to comprehensively explore the genetic characteristics of diseases, especially for some rare tumors.

FFPE samples are a unique sample type with a lot of challenges, and researchers from BGI Tech have optimized the DNA extraction, library construction and sequencing pipelines of FFPE DNA samples. At present, DNA as low as 200 ng from FFPE samples can be used for whole exome sequencing. To insure the accuracy and quality of sequencing, researchers evaluated the FFPE DNA sequencing results and demonstrated that FFPE exome sequencing could maintain the equivalent accuracy and reliability with the normal DNA sample sequencing.

It is reported that ~85% of genetic diseases are related with exome variations. Whole exome sequencing is a robust innovative technique that selectively sequences the coding regions of a genome and can be used to identify novel genes associated with rare and common diseases such as cancer, diabetes, and obesity. However, currently traditional exome sequencing has higher requirement for the quality and the amount of input of DNA samples.

Zhao Lin, Director of Products R&D Department of BGI Tech, said, “Our whole exome sequencing technology with FFPE DNA sample is an important step toward better and quickly decoding the genetic information underlying FFPE diseases samples. I believe this advancement will strengthen the confidence of researchers in pharmaceutical and disease areas, especially when samples are limited. In order to accelerate biomedical research, we expect to conduct more FFPE sequencing projects with collaborators worldwide.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos