Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Breakthroughs in Chikungunya Research Spell New Hope for Better Treatment and Protection

Published: Monday, September 24, 2012
Last Updated: Monday, September 24, 2012
Bookmark and Share
A*STAR's SIgN have made great strides in the battle against the infectious disease.

Recent breakthroughs in Chikungunya research spearheaded by scientists at A*STAR's Singapore Immunology Network (SIgN) have made great strides in the battle against the infectious disease.

Working in close collaborations with Singapore clinician-scientists and international researchers, Dr Lisa Ng, Principal Investigator of the Chikungunya research group at SIgN, led the team to discover a direct biomarker which serves as an early and accurate prognosis of patients who have a higher risk of the more severe form of Chikungunya fever (CHIKF).

This means that doctors can now quickly and accurately identify patients at risk, facilitating a more targetted treatment and clinical care at the onset of the disease.

Chikungunya fever, caused by the Chikungunya virus (CHIKV), is a mosquito-borne, infectious disease endemic to Southeast Asia and Africa.

Since its re-emergence in 2005, CHIKV infection has spread to nearly 20 countries to infect millions. Singapore, for instance, was hit twice by Chikungunya fever outbreaks in January and August 2008.

CHIKV infection is characterized by an abrupt onset of fever frequently accompanied by severe muscle and joint pains. Though most patients recover fully within a week, in severe cases, the joint pains may persist for months, or even years.

For individuals with a weak immune system, the disease can result in death. With no clinically-approved vaccine or treatment for Chikungunya fever, it remains a worrying public health problem.

To devise strategies to stop CHIKV transmission, Dr Ng's team collaborated with Professor Leo Yee Sin and Dr Angela Chow, clinician-scientists from the Communicable Disease Centre (CDC) at Tan Tock Seng Hospital, to study how the human body responds to CHIKV infection.

The team conducted a comprehensive study on the antibody response against CHIKV in patients. They discovered that patients who respond to the disease at the onset with high levels of Immunoglobulin G3 (IgG3), a naturally-acquired antibody, are protected from the more severe form of Chikungunya fever, characterized by persistent joint pains.

On the other hand, patients with a delayed IgG3 response generally have less acute symptoms at the start, but are more susceptible to chronic debilitating joint pains at later stage of the disease.

Hence, the IgG3 antibodies serve as a specific biomarker of patients with increased risk of the severe form of the disease.

Collaborating with computational experts from A*STAR's Institute for Infocomm Research (I2R), Dr Ng's team also uncovered that a very small defined segment of the Chikungunya viral protein, named "E2EP3", was able to induce the natural IgG3 protective response in preclinical models.

They found that mice vaccinated with the E2EP3 peptides were protected against CHIKV with significant reduction in viral counts and joint inflammation.

This finding raises hope for a new effective Chikungunya vaccine that can offer protection against Chikungunya virus in the event of an outbreak.

Dr Ng said, "Long-term treatment required for the chronic joint pain in Chikungunya-infected patients places social and economic burden for both patients and the public healthcare system. We are excited that the mechanistic insights gained through our collaborative research with the local hospitals and international research partners have led to discovery of 'new weapons' to tackle Chikungunya more effectively."

Scientific Director of SIgN, Professor Paola Castagnoli said, "With increasing threat of Chikungunya virus infection, particularly in Asia and the Pacific region, this significant breakthrough is a step forward in enhancing our pandemic preparedness against the infectious disease. This is a testament to the successful collaborations between research scientists and clinicians in translating scientific discoveries into impactful healthcare solutions for the benefit of Singapore and beyond."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Colorful Nanoprobes Make A Simple Test
Gold nanoparticles linked to single-stranded DNA create a simple but versatile genetic testing kit.
Thursday, September 25, 2014
A*STAR Scientists Discover Potential Drug for Deadly Brain Cancer
This discovery can potentially prevent the progression and relapse of deadly brain tumours.
Tuesday, January 15, 2013
Singapore Scientists Identify New Biomarker for Cancer in Bone Marrow
This discovery may potentially cure patients of multiple myeloma.
Friday, December 14, 2012
A*STAR Scientists Pinpoint Genetic Changes that Spell Cancer
Fruit flies light the way for scientists to uncover genetic changes.
Thursday, August 16, 2012
Discovery of the Cellular Origin of Cervical Cancer
A team of scientists have identified a unique set of cells in the cervix that are the cause of HPV related cervical cancers.
Tuesday, June 12, 2012
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Genes Associated With Improved Survival for Pancreatic Cancer Patients
Use of non-invasive liquid biopsies could predict in which patients the cancer could recur following surgery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!