Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Portable Device Enables RNA Detection from Ultra-Small Sample

Published: Friday, November 09, 2012
Last Updated: Friday, November 09, 2012
Bookmark and Share
A new power-free microfluidic chip developed by researchers at the RIKEN Advanced Science Institute (ASI) enables detection of microRNA from extremely small sample volume in only 20 minutes.

By drastically reducing the time and quantity of sample required for detection, the chip lays the groundwork for early-stage point-of-care diagnosis of diseases such as cancer and Alzheimer's.

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in a wide range of biological processes including development, cell proliferation, differentiation and cell death (apoptosis). Concentration of certain miRNA in body fluids increases with the progression of diseases such as cancer and Alzheimer's, generating hope that these short RNA may hold the key to faster, more accurate diagnosis. Currently available techniques for sensitive miRNA detection, however, require days to reach a diagnosis and involve equipment operated only by trained personnel, making them impractical for use in many situations.

The research team set out to overcome these obstacles by developing a device that enables fast, easy-to-use point-of-care (POC) diagnosis from only a very small sample. In earlier research, the team developed a device in the form of a microchip which uses polydimethylsiloxane (PDMS), a silicone compound known for its air absorption properties, to pull reagents into a capture probe for analysis. This pumping technique simplified design by eliminating the need for external power sources, but the device required a quantity of sample too large for practical applications.

The new device also uses PDMS as an air pump, but drastically improves the method's sensitivity through a signal amplification method called laminar flow-assisted dendritic amplification (LFDA). First, DNA fragments which bond to specific miRNA sequences are fixed to a glass surface along with the miRNA sample to be analyzed, and then sandwiched under a layer of PDMS with channels in it (Figure 1). Emptied of air in a vacuum, the PDMS layer induces a pump effect which pulls amplification reagents, inserted at the channel inlets, into the channels and into contact with the miRNA, creating fluorescence-labeled dendritic structures that grow over time and can be quickly detected.

The sensitivity of this technique drastically reduces the sample quantity required for diagnosis to only 0.25 attomoles (10-18 mole), a thousand-fold improvement over the team's earlier model. Together with its detection time of only 20 minutes, these properties make the self-powered device ideal for use in resource-poor environments, promising portable point-of-care diagnosis for millions in developing countries and around the world.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Thursday, July 30, 2015
Insights Into A Rare Genetic Disease
Study shows mutation in NGLY1 gene is linked to a genetic disorder with severe consequences.
Tuesday, January 20, 2015
Predicting Antibiotic Resistance
A common set of features appear to be responsible for the development of resistance to several types of antibiotics.
Friday, December 19, 2014
Scientific News
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
Autism and Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!