Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Personalized Medicine From Genomics and Bioinformatics Highlighted at UCSF Genetics Symposium

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
Personalized medicine advances arising from genetic discoveries were the primary focus of wide-ranging presentations at the UCSF Institute for Human Genetics 2012 Symposium.

Speakers described clinical research that has resulted in the identification of gene mutations that often drive deadly breast cancers in black populations; explained how rare mutations responsible for devastating developmental defects in infants can now be discovered in studies of just a handful of individuals from affected families; offered a preview of results expected to emerge from studies of genes and environment in hundreds of thousands of patients through a Kaiser Permanente-UCSF project; and described technical advances that continue to increase scientists’ ability to identify links between DNA and disease.

All the speakers “are at the cutting edge of applying genomics and informatics to precision medicine,” said the institute’s director Neil Risch, MD, referring to an emerging trend in medicine in which treatment is tailored to the patient through a more precise diagnosis of disease.

At UCSF — a crucible of biotechnology and home to Nobel laureates who identified a role for the mutation of normal genes in cancer — major new initiatives are underway in clinical genetics and bioinformatics, Risch said.

The symposium led off with geneticist Eddy Rubin, MD, PhD, whose presentation demonstrated that genetic studies are being applied to human problems that extend even beyond the realm of medicine.

Rubin – a scientist who oversaw the sequencing and analysis of 13 percent of the human genome as part of the original Human Genome Project – has taken his research from studying abnormalities in DNA “enhancers” that may contribute to disease susceptibility or birth defects, to cutting global greenhouse gas emissions by manipulating gut microbes in sheep.

Early in his career, Rubin completed a medical genetics fellowship under the late Charles Epstein, MD, a founding director of the UCSF Institute for Human Genetics and a driving force behind medical genetics becoming an accredited medical specialty. Rubin was featured at the symposium as the named 2012 Charles J. and Lois B. Epstein Visiting Professor at UCSF.

Rubin, director of the Department of Energy’s Joint Genome Institute and director of the Genome Sciences Division at Lawrence Berkeley National Laboratory, is a pioneer in exploring DNA beyond genes, which until recently was a poorly understood realm that may nonetheless prove to be key to understanding fundamental aspects of biology and disease.

Researchers were for decades focused on DNA that encodes proteins – the genes. But the sequencing and analysis of the genome has revealed that genes account for less than 2 percent of the DNA on the 46 human chromosomes. Within the universe of DNA, the stuff beyond the genes is comparable to the poorly understood dark matter of the cosmos.

DNA 'Enhancers' Guide Development

Rather than working under the lamppost where the genes are, Rubin explores DNA within these dark regions of the chromosomes. He focuses on bits of DNA called “enhancers,” which play an important role in determining how much protein is made from a gene at a particular time and place within an organism – with great implications for how a creature develops.

Rubin wondered: Could abnormal enhancers or unusual variations in specific enhancers be playing a role in disease susceptibility or birth defects?

Some enhancers are similar across many organisms, while others are more specific to humans or to other species, Rubin said. Within the cell’s DNA, the enhancers often are nowhere near the genes they affect, but Rubin has developed new ways to find them.

Enhancers switch on and off as an organism develops, and some are uniquely activated within particular tissues. Many enhancers are the same in different species, “conserved” through the course of evolution.

But the enhancers that switch on later in development are more likely to be unique to that species. “Early in development, we see very conserved enhancers, but later on during development we see enhancers that are not conserved,” Rubin said.

Thus the developing human heart, which forms early during embryogenesis, shares many enhancers with the developing hearts of other species. Brains, which form later, share fewer enhancers across species.

Working with mice, Rubin has identified 4,400 enhancers involved in shaping the face and the bones of the head and found that some abnormal enhancer DNA appears to play a role in facial abnormalities. “We’re seeing subtle effects … with many variants causing small effects,” he said.

Sheep Flatulence and Global Warming

At the DOE Joint Genome Institute, Rubin has begun to devote more of his research effort to the study of global greenhouse gases, specifically the contributions from livestock such as cows and sheep. These barnyard beasts harbor gut microbes that produce methane while helping the sheep to digest grass and other sources of cellulose.

As countries with large populations become wealthier, their citizens not only aspire to drive more cars and own more appliances, they also want to eat more meat, Rubin said, which is likely to lead to yet more greenhouse gas production as more of these domestic animals are raised to meet the growing demand.

In New Zealand, Rubin said, “They do believe in climate change, and they are putting in place a carbon tax, and they’re going to be charging their sheep farmers. So the sheep farmers are very interested in how the sheep produce methane and whether they can mitigate it at all.”

Rubin and his New Zealand colleagues studied 23 age- and size-matched members of a flock of sheep raised in the same pasture. The gut, or more precisely the “rumen” of a sheep contains massive amounts of bacteria, protozoa and fungi that ferment cellulose in grass and convert it into nutrients for the sheep. But sheep also house another type of microbe called Archaea. Archaea produce methane, which the sheep burp and fart out, Rubin said.

Genetic analysis permitted the researchers to figure out why methane emissions varied among sheep and to determine how Archaea might be a suitable target of efforts to lower methane release.

Rubin and colleagues did not find differences in the numbers of methane-producing microbes between the high-methane and low-methane producing sheep, but they did find that the methane-producing microbes within high-methane-emitting sheep were better at making methane, as evidenced by the increased activation of genes involved in the biochemical steps of methane production.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Did Inefficient Cellular Machinery Evolve to Fight Viruses and Jumping Genes?
UCSF scientist poses new theory on origins of eukaryotic gene expression.
Monday, November 11, 2013
Single Gene Mutation Linked to Neurological Disorders
Mutation could offer insights into Alzheimer’s, Parkinson’s and Huntigton’s Diseases.
Wednesday, October 16, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Brain Anomolies are Potential Biomarkers for Autism
Brain anomalies may serve as potential biomarkers for the early identification of the neurodevelopmental disorder.
Wednesday, July 10, 2013
Second Amyloid May Play a Role in Alzheimer's
The study is the first to identify deposits of the protein, called amylin, in the brains of people with Alzheimer's disease.
Monday, July 01, 2013
Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.
Tuesday, June 25, 2013
Studies Illuminate Functions of RNA
Researchers at the University of California illuminate the functional importance of a relatively new class of RNA molecules.
Tuesday, June 11, 2013
Gene Mutation Gives Boost to Brain Cancer Cells
An international team of researchers has found that a singular gene mutation helps brain cancer cells to not just survive, but grow tumors rapidly.
Monday, June 10, 2013
Potential New Way to Suppress Tumor Growth Discovered
The new mechanism opens up the possibility of developing a new class of anti-cancer drugs.
Monday, June 10, 2013
Scientists ID New Kidney Cancer Subtypes
Breakthrough will help physicians tailor treatment to individual kidney cancer patients, moving cancer care one step closer to personalized medicine.
Thursday, April 18, 2013
Scientific News
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!