Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Risk Gene for Cannabis Psychosis

Published: Friday, November 16, 2012
Last Updated: Friday, November 16, 2012
Bookmark and Share
The ability of cannabis to produce psychosis has long been an important public health concern. This concern is growing in importance as there is emerging data that cannabis exposure during adolescence may increase the risk of developing schizophrenia.

Further, with the advent of medical marijuana, a new group of people with uncertain psychosis risk may be exposed to cannabis.

For these reasons, it would be valuable if a biological test could be developed that predicted the risk for developing cannabis psychosis. This test could be used to advise people who abuse cannabis or to inform marijuana-prescribing decisions by physicians.

Recent research has implicated a variation in the gene that codes for a protein called RAC-alpha serine/threonine-protein kinase (Akt1) in the risk for cannabis psychosis. However, independent verification of these findings is critical for genetic associations with complex genetic traits, like cannabis-related psychosis, because these findings are notoriously difficult to replicate.

Led by first author Dr. Marta Di Forti at King’s College London’s Institute of Psychiatry, genetic researchers carried out a case control study to investigate variation in the AKT1 gene and cannabis use in increasing the risk of psychosis.

Di Forti said, “We studied the AKT1 gene as this is involved in dopamine signaling which is known to be abnormal in psychosis. Our sample comprised 489 patients with their first episode of psychosis and 278 healthy controls.”

They performed genotyping on all volunteers, and assessed their use of cannabis. They found that AKT1 genotype influences the risk of psychotic disorders in cannabis users, which confirmed the prior report.

“We found that cannabis users who carry a particular variant in the AKT1 gene had a two-fold increased probability of a psychotic disorder and this increased up to seven-fold if they used cannabis daily,” explained the authors. “Our findings help to explain why one cannabis user develops psychosis while his friends continue smoking without problems.”

“While the AKT1 genotype does not rise to the level of a clinically useful test of the risk for cannabis psychosis, it does show that this source of psychosis risk has a genetic underpinning,” commented Dr. John Krystal, Editor of Biological Psychiatry. “This advance also points to cellular signaling mechanisms mediated by Akt1 as being relevant to the biology of cannabis psychosis. This may suggest research directions for novel therapeutics for cannabis psychosis.”

Di Forti agreed, adding that “such findings could also help to design health educational campaigns tailored to reach those young people at particular risk.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Mystery of Early Embryonic Development Solved
Breakthrough genomics technique can be used to map epigenetic marks across the genome using fewer cells and will benefit cancer research
Mouse Genes Guiding Precision Medicine
Research of the mouse genome has identified hundreds of essential-to-life genes from the 1751 genes studied.
Eisai Establishes AiM Institute
The Andover innovative Medicines (AiM) Institute will develop innovative precision medicines for hard-to-treat conditions.
Schizophrenia Drug Response Dictated by Genes
Study suggests schizophrenia drug may decrease negative symptoms for people with certain gene variant.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!