Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Metabolic Protein Launches Sugar Feast that Nurtures Brain Tumors

Published: Wednesday, November 28, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
PKM2 slips into nucleus to promote cancer; potential biomarker and drug approach discovered.

Researchers at The University of Texas MD Anderson Cancer Center have tracked down a cancer-promoting protein's pathway into the cell nucleus and discovered how, once there, it fires up a glucose metabolism pathway on which brain tumors thrive.

They also found a vital spot along the protein's journey that can be attacked with a type of drug not yet deployed against glioblastoma multiforme, the most common and lethal form of brain cancer. Published online by Nature Cell Biology, the paper further illuminates the importance of pyruvate kinase M2 (PKM2) in cancer development and progression.

"PKM2 is very active during infancy, when you want rapid cell growth, and eventually it turns off. Tumor cells turn PKM2 back on - it's overexpressed in many types of cancer," said Zhimin Lu, M.D., Ph.D., the paper's senior author and an associate professor in MD Anderson's Department of Neuro-Oncology.

Lu and colleagues showed earlier this year that PKM2 in the nucleus also activates a variety of genes involved in cell division. The latest paper shows how it triggers aerobic glycolysis, processing glucose into energy, also known as the Warburg effect, upon which many types of solid tumors rely to survive and grow.

"PKM2 must get to the nucleus to activate genes involved in cell proliferation and the Warburg effect," Lu said. "If we can keep it out of the nucleus, we can block both of those cancer-promoting pathways. PKM2 could be an Achilles' heel for cancer."

By pinpointing the complicated steps necessary for PKM2 to penetrate the nucleus, Lu and colleagues found a potentially druggable target that could keep the protein locked in the cell's cytoplasm.

MEK, ERK emerge as targets

The process begins when the epidermal growth factor connects to its receptor on the cell surface. This leads to:

•    Activation of the MEK protein, which in turn activates ERK.
•    ERK sticking a phosphate group to a specific spot on PKM2.
•    Phosphorylation priming PKM2 for a series of steps that culminate in its binding to the protein importin, which lives up to its name by taking PKM2 through the nuclear membrane.

Once in the nucleus, the team showed that PKM2 activates two genes crucial to aerobic glycolysis and another that splices PKM RNA to make even more PKM2.

An experiment applying several kinase-inhibiting drugs to human glioblastoma cell lines showed that only a MEK/ERK inhibitor prevented EGF-induced smuggling of PKM2 into the nucleus. ERK activation then is mandatory for PKM2 to get into the nucleus.

"MEK/ERK inhibitors have not been tried yet in glioblastoma multiforme," Lu said. Phosporylated PKM2 is a potential biomarker to identify patients who are candidates for MEK/ERK inhibitors once those drugs are developed.

MEK inhibitor blocks tumor growth

The researchers also found that the two glycolysis genes activated by PKM2, called GLUT1 and LDHA, are required for glucose consumption and conversion of pyruvate to lactate, crucial factors in the Warburg Effect. Depleting PKM2 in tumor cell lines reduced glucose consumption and lactate production.

In mice, depleting PKM2 blocked the growth of brain tumors. Re-expressing the wild type protein caused tumors to grow. However, re-expression of a PKM2 mutant protein that lost its ability to get into the nucleus failed to promote tumor formation. Experiments in human glioblastoma cell lines showed the same effect.

Injecting the MEK inhibitor selumetinib into tumors inhibited tumor growth, reduced ERK phosphorylation, PKM2 expression and lactate production in mice. In 48 human tumor samples, the team found that activity of EGFR, ERK1/2 and PKM2 were strongly correlated.

Cause of PKM2 overexpression

Lu and colleagues also published a paper in Molecular Cell that revealed a mechanism for overexpression of PKM2 in glioblastoma. They found that EGF receptor activation turns on NF-KB, which leads to a series of events culminating in PKM2 gene activation.

PKM2 levels were measured in tumor samples from 55 glioblastoma patients treated with standard of care surgery, radiation and chemotherapy. The 20 with low PKM2 expression had a median survival of 34.5 months, compared to 13.6 months for the 35 patients with high levels of PKM2.

Level of PKM2 expression in 27 low-grade astrocytomas was about half of the expression found in higher grade glioblastomas.

"In these two papers, we show how PKM2 is overexpressed in tumors, how it gets into the nucleus, that nuclear entry is essential to tumor development, and identified potential drugs and a biomarker that could usefully treat people," Lu said.

Co-authors of the Nature Cell Biology paper are first author Weiwei Yang, Ph.D., Yanhua Zheng, Ph.D., Yan Xia, Ph.D., and Haitao Ji, Ph.D., of MD Anderson's Department of Neuro-Oncology and Brain Tumor Center; Xiaomin Chen, Ph.D., of MD Anderson's Department of Biochemistry and Molecular Biology; Ken Aldape, M.D., MD Anderson's Department of  Pathology; Fang Guo, Ph.D., Nanomedicine Center, Shanghai Research Institute, China Academy of Science; Costas Lyssiotis, Ph.D., and Lewis Cantley, Ph.D., Beth Israel Deaconess Medical Center, Harvard Medical School.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Seed Size is Controlled by Maternally Produced Small RNAs, Scientists Find
Seed size is controlled by maternally produced small RNAs, scientists find.
Thursday, April 12, 2012
UT Houston Enrolls First Patient in Stem Cell Study for Stroke
For the first time in the United States, a stroke patient has been intravenously injected with his own bone marrow stem cells as part of a research trial.
Thursday, April 23, 2009
Genetic Variation Raises HIV Risk in People of African Descent
A genetic variation that may have protected people of African descent against a pandemic of malaria long ago now appears to increase their susceptibility to HIV infection.
Wednesday, July 23, 2008
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos