Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Mystery of Behcet's Disease Unfolds Along the Ancient Silk Road

Published: Monday, January 07, 2013
Last Updated: Monday, January 07, 2013
Bookmark and Share
NIH researchers identify new gene variants associated with risk for complex inflammatory syndrome.

Researchers have identified four new regions on the human genome associated with Behcet's disease, a painful and potentially dangerous condition found predominantly in people with ancestors along the Silk Road. For nearly 2,000 years, traders used this 4,000-mile network linking the Far East with Europe to exchange goods, culture and, in the case of the Silk Road disease, genes. National Institutes of Health researchers and their Turkish and Japanese collaborators published their findings in the Jan. 6, 2013, advance online issue of Nature Genetics.

Named for the Turkish physician who described it in 1937, Behcet’s (pronounced BET’-chets) disease is triggered by complex genetic and environmental factors, and causes inflammation of blood vessels in various parts of the body. Common symptoms include painful mouth and genital sores, and eye inflammation that can lead to blindness. In some cases, it can be life-threatening, affecting blood vessels in the brain, lungs, and other vital organs. About 1 in 250 people in Turkey have Behcet's disease; others with the disease are found largely in regions along the Silk Road.

Genetic factors are thought to play a role in susceptibility to Behcet's disease, with the human leukocyte antigen (HLA) B-51 gene region of the genome, accounting for about 20 percent of genetic risk for the disease. Researchers have been aware of the HLA B-51 association for about 40 years. Two years ago, the research team identified gene associations at two other specific chromosome locations, or loci.

"The current study represents an important advance because it dramatically broadens the spectrum of genetic loci associated with Behcet's disease," said Dan Kastner, M.D., Ph.D., scientific director of the Intramural Research Program at the National Human Genome Research Institute and senior author of the study. "These newly discovered genetic associations provide a link between Behcet’s disease and other more common illnesses, and thereby suggest new therapies for Behcet’s disease. In addition, two of the newly discovered genes provide an intriguing link between genes and the microbes in our environment."

Researchers conducted a genome-wide association study (GWAS) that enrolled 1,209 Turkish people affected by Behcet's disease and 1,278 unaffected Turkish people — all residents of the country. They looked at many points on the human genome called single-nucleotide polymorphisms (SNPs), with each SNP representing a difference in a single DNA building block, called a nucleotide. Researchers then compared SNP differences between people with and without disease.

From nearly 800,000 SNPs, researchers detected and mapped a small number that are found in those who have Behcet’s disease at a significantly higher rate than in those without the disease, suggesting that the variant or another one nearby contributes to the disease.

"Each of the genetic factors may contribute a little to the overall risk of disease," said Elaine F. Remmers, Ph.D., staff scientist in NHGRI’s Inflammatory Disease Section and study co-author. "We are also identifying them in pathways that are important in inflammatory disease development."

She noted that not all of the 800,000 gene variants analyzed were directly genotyped. Genotyping involves examining a person's DNA at a site where a variation is commonly known to occur. Instead, the team used the strategy of imputing, or surmising, that there were genotypes worth investigating near known variants.

"That worked very well for us," Dr. Remmers said. "We found that our predicted genotypes were pretty good and that the associations we found were quite similar in both the predicted and the experimentally confirmed genotypes."

Each of the four newly identified gene regions is already known to play a role in immune regulation. The genetic associations have helped classify Behcet’s disease with more common inflammatory conditions such as psoriasis, inflammatory bowel disease and a form of spinal arthritis called ankylosing spondylitis.

Among the newly identified regions, researchers found:

•    An important association between Behcet’s disease and a gene called ERAP1. ERAP1 codes for a molecule that processes microbial proteins in white blood cells. Variants of this protein can lead to more or less efficient processing of microbial proteins before they are loaded onto HLA molecules for presentation to the immune system. The variants of ERAP1 identified in this study increase the risk of Behcet's disease, but only in those individuals with one specific HLA type, HLA-B51, which has previously been associated with Behcet’s disease. Dr. Kastner speculates that the ERAP1 variant associated with Behcet’s disease processes microbial proteins in such a way that they can be loaded onto the HLA-B51 molecule to trigger an abnormal immune response. The very same variant of ERAP1 that is associated with Behcet's disease is protective for ankylosing spondylitis and psoriasis, but only in people with the HLA types associated with those diseases.
•    A significant association of Behcet's disease with variants near the CCR1 gene. Proteins coded by this gene help infection-fighting blood cells migrate to sites of invading microorganisms. When this function is defective, the microorganisms can trigger a persistent inflammatory response.
•    An association of the disease with variants in the KLRC4 gene. The function of the receptor protein coded by this gene is not well understood, but the researchers suggest that it may be important to investigate further because it is located within the genomic region with the strongest evidence for linkage to a disease gene in a study of Turkish family health histories in which members sometimes have a rare familial form of Behcet’s disease.
•    An association with the STAT4 gene, in which different variants in the same vicinity of the genome increase risk for autoimmune diseases, including rheumatoid arthritis and lupus.

"We are incredibly excited about these latest findings," Dr. Kastner said. "Combined with our studies two years ago, the current genetic data make a strong case for a causal connection between Behcet’s disease and disorders such as ankylosing spondylitis, psoriasis, and inflammatory bowel disease. This raises real hope that some of the treatments that have been found effective in these other illnesses will have some utility in Behcet’s disease, thereby helping to alleviate suffering and prevent mortality."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Thursday, September 29, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
NIH Funds Precision Medicine
NIH have committed roughly $31M to launch a new program for Transdisciplinary Collaborative Centers for health disparities research.
Friday, July 29, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!