Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Oscillation of Gene Activity May Underlie How Embryos Grow in Proportion

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
The size of pre-vertebrae in a mammalian embryo is controlled by a wave-like gene expression pattern along its back.

From a single-cell egg to a fully functional body: as embryos develop and grow, they must form organs that are in proportion to the overall size of the embryo. The exact mechanism underlying this fundamental characteristic, called scaling, is still unclear. However, a team of researchers from EMBL Heidelberg is now one step closer to understanding it. They have discovered that scaling of the future vertebrae in a mouse embryo is controlled by how the expression of some specific genes oscillates, in a coordinated way, between neighbouring cells. Published today in Nature, their findings highlight how important this oscillatory pattern, and its regulation, is to ensure that embryos grow up to become well-proportioned animals.

Neighbouring cells in the future vertebral column of an embryo coordinate to turn specific genes on and off in turn, thus generating a wave of gene expression similar to the ‘Slide to unlock’ animation on your smart phone. To study this process, and determine its impact on how the relative sizes of the future vertebrae are maintained, the researchers developed a new technique.

“Using this new assay, we were able to film this wave of gene expression in real time with high precision, and to identify whether this pattern could change according to the overall size,” explains Alexander Aulehla who coordinated the study at EMBL Heidelberg. “There is a clear link: when the embryo is smaller, the number of segments formed remains the same, but each segment is smaller and the expression waves are proportionally slower.”

The speed of the wave seems to be the essential characteristic to predict the size of the future vertebra: the faster the wave, the bigger the vertebra. Similar expression waves have been observed in several vertebrates and also in insect species, so this communication pattern amongst embryonic cells seems to be very wide-spread. However, scientists haven’t yet elucidated how the speed of the wave is controlled at a molecular level.

The technique developed in this study might be the key to helping the team understand this complex and fundamental mechanism. In order to make observation easier, the scientists grew only one layer of embryonic stem cells to which a specific marker was added, to follow the expression of the Notch genes. The combination of the monolayer and marking made real-time observation of gene expression possible. In the future this new technique might help researchers understand the details of how embryonic cells sync to grow.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Gene That Lowers Heart Attack Risk Identified
Individuals with a rare twelve-letter deletion from a gene on chromosome 17 have significantly reduced non-HDL cholesterol levels and a 35% lower than average risk of heart disease.
"Sunscreen" Gene May Guard Against Melanoma
USC-led study reveals that melanoma patients with deficient or mutant copies of the gene are less protected from harmful ultraviolet rays.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Roundup Impacts Gene Expression
Study published on the impact of low-dose toxicity of Roundup weed-killer on gene expression profiles.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!