Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A*STAR Scientists Discover Potential Drug for Deadly Brain Cancer

Published: Tuesday, January 15, 2013
Last Updated: Tuesday, January 15, 2013
Bookmark and Share
This discovery can potentially prevent the progression and relapse of deadly brain tumours.

A*STAR scientists have identified a biomarker of the most lethal form of brain tumours in adults - glioblastoma multiforme.

The scientists found that by targeting this biomarker and depleting it with a potential drug, they were able to prevent the progression and relapse of the brain tumour.

This research was conducted by scientists at A*STAR's Institute of Medical Biology led by Dr Prabha Sampath, Principal Investigator, in collaboration with A*STAR's Bioinformatics Institute (BII), and clinical collaborators from Medical University of Graz, Austria, and National University of Singapore.

The research findings were published on Aug 23 in the scientific journal, Cell Reports from Cell Press.

The scientists found that the biomarker, miR-138, is highly expressed in cancer stem cells compared to normal neural stem cells. They thus carried out in vitro experiments to deplete miR-138 in these cancer stem cells with a potential drug, antimiR-138, to observe the effect.

They found that when miR-138 is depleted, the cancer cells are completely destroyed. This is an important breakthrough as current therapies such as gamma radiation and surgical methods proved to be inadequate in treating these brain tumours, which tend to re-grow from cancer stem cells and become extremely lethal.

Dr Sampath said, "In this study we have identified a master regulator, miR-138, which is essential for the progression and relapse of a deadly form of brain cancer. By targeting this regulator we can effectively prevent the recurrence of this lethal form of cancer. This promising finding will pave the way for the development of a novel therapy to successfully treat the aggressive forms of brain cancer."

Studies were also done in mice to determine whether antimiR-138 could effectively inhibit the growth of tumours. These experiments were conducted with a control drug as well, revealing that tumours continued to be present when mice were injected with the control, while injection with the antimiR-138 showed no tumour growth after nine months.

Dr Alan Colman, Executive Director of Singapore Stem Cell Consortium and a Principal Investigator at IMB said, "Malignant gliomas are a particularly devastating and lethal form of human brain cancer. As with a growing number of other cancers, evidence is accumulating that the persistence and chemo-resistance of this cancer is due to the presence of glioma stem cells (GSCs). In this exciting publication, Sampath and colleagues indicate that in the tumours, these GSCs express the microRNA-138 (miR-138) and that the targeted elimination of this RNA markedly reduced the growth and survival of GSCs in cell culture. This work highlights the possible significance of miR-138 as a prognostic biomarker and also suggests miR-138 synthesis as a target for therapeutic intervention."

Prof Sir David Lane, Chief Scientist at A*STAR, added, "These findings will facilitate the translation of basic research into clinical applications such as targeted drug design to treat brain cancer. This is an excellent example of how A*STAR's impactful research can be applied to develop treatments for diseases like cancer."

Dr Sampath was a recipient of the A*STAR Investigatorship Award in 2007, a prestigious research award designed to attract the most promising young researchers from around the world to do independent research at A*STAR.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Colorful Nanoprobes Make A Simple Test
Gold nanoparticles linked to single-stranded DNA create a simple but versatile genetic testing kit.
Thursday, September 25, 2014
Singapore Scientists Identify New Biomarker for Cancer in Bone Marrow
This discovery may potentially cure patients of multiple myeloma.
Friday, December 14, 2012
Breakthroughs in Chikungunya Research Spell New Hope for Better Treatment and Protection
A*STAR's SIgN have made great strides in the battle against the infectious disease.
Monday, September 24, 2012
A*STAR Scientists Pinpoint Genetic Changes that Spell Cancer
Fruit flies light the way for scientists to uncover genetic changes.
Thursday, August 16, 2012
Discovery of the Cellular Origin of Cervical Cancer
A team of scientists have identified a unique set of cells in the cervix that are the cause of HPV related cervical cancers.
Tuesday, June 12, 2012
Scientific News
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Scoliosis Linked to Disruptions in Spinal Fluid Flow
A new study in zebrafish suggests that irregular fluid flow through the spinal column brought on by gene mutations is linked to a type of scoliosis that can affect humans during adolescence.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!