Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Possible Role for Huntington’s Gene Discovered

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
Mutant forms of the gene disrupt chemical modifications that control access to genes necessary for normal brain cell function.

About 20 years ago, scientists discovered the gene that causes Huntington’s disease, a fatal neurodegenerative disorder that affects about 30,000 Americans. The mutant form of the gene has many extra DNA repeats in the middle of the gene, but scientists have yet to determine how that extra length produces Huntington’s symptoms.

In a new step toward answering that question, MIT biological engineers have found that the protein encoded by this mutant gene alters patterns of chemical modifications of DNA. This type of modification, known as methylation, controls whether genes are turned on or off at any given time.

The mutant form of this protein, dubbed “huntingtin,” appears to specifically target genes involved in brain cell function. Disruptions in the expression of these genes could account for the neurodegenerative symptoms seen in Huntington’s disease, including early changes in cognition, says Ernest Fraenkel, an associate professor of biological engineering at MIT.

Fraenkel’s lab is now investigating the details of how methylation might drive those symptoms, with an eye toward developing potential new treatments. “One could imagine that if we can figure out, in more mechanistic detail, what’s causing these changes in methylation, we might be able to block this process and restore normal levels of transcription early on in the patients,” says Fraenkel, senior author of a paper describing the findings in this week’s issue of the Proceedings of the National Academy of Sciences.

Lead author of the paper is Christopher Ng, an MIT graduate student in biological engineering. Other authors are MIT postdoc Ferah Yildirim; recent graduates Yoon Sing Yap, Patricio Velez and Adam Labadorf; technical assistants Simona Dalin and Bryan Matthews; and David Housman, the Virginia and D.K. Ludwig Professor of Biology.

Unexpected patterns

DNA methylation has a major impact on genetic expression: Genes that are methylated at particular sites are usually dormant, because the methyl groups deny access to the proteins needed to copy DNA’s instructions and carry them to the rest of the cell. For a long time, scientists believed that DNA methylation patterns changed during embryonic development and then remained constant in adulthood. However, DNA methylation is emerging as important to a wide range of normal cell activity.

In the new study, the MIT team measured changes in methylation patterns during early stages of Huntington’s disease in cells derived from a brain region called the striatum in mouse embryos. This region, where planning of movement occurs, is severely affected by Huntington’s disease.

“We’re very interested in the earliest phases, because that’s when there’s the most hope that you could either slow down or stop progression of the disease, and allow people to live healthy lives much longer,” Fraenkel says. “By the time there is much more severe neurodegeneration, it’s unlikely that you’re going to be able to reverse the damage.”

Fraenkel and Ng were surprised to find a dramatic difference in methylation patterns between cells with normal and mutant forms of the huntingtin protein. Some genomic sites gained methylation, while others lost it. Many of the affected sites were in regions that regulate the expression of nearby genes necessary for neuron growth and survival.

Turning genes off and on

After observing the changing methylation patterns, the MIT team identified many proteins that tend to bind to the DNA sites where those changes take place. These proteins include Sox2 and others known to regulate genes involved in neuronal activity, including growth of the neurons.

The new findings go a long way toward explaining how the extra DNA repeats in the mutant form of the huntingtin gene might bring about disease, says Mark Mehler, a professor of neurology at the Albert Einstein College of Medicine. “People have not had a good sense, until this paper, of what these repeats might be doing,” says Mehler, who was not part of the research team. “What this study has done is demonstrated a mechanism by which expanded repeats can alter gene expression.”

The researchers are now studying whether huntingtin affects other modifications of DNA and histones, the proteins around which DNA is wound. Together, these might cause genes to be turned on or off inappropriately, Fraenkel says.

The researchers are also working with mouse models at different stages of Huntington’s disease to track how the methylation patterns change as the disease progresses. “That also gives us an opportunity to do interventions and test whether affecting particular proteins influences the progression of the disease,” Fraenkel says.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
How To Identify Drugs That Work Best For Each Patient
Implantable device could allow doctors to test cancer drugs in patients before prescribing chemotherapy.
Monday, April 27, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
Epigenomics of Alzheimer’s Disease Progression
Study of epigenomic modifications reveals immune basis of Alzheimer's disease.
Thursday, February 19, 2015
Proteins Drive Cancer Cells To Change States
When RNA-binding proteins are turned on, cancer cells get locked in a proliferative state.
Monday, December 15, 2014
Genetic Material Hitchhiking in Our Cells May Shape Physical Traits
Explaining the connection between genotype and phenotype must also consider genetic material that doesn’t come from an organism’s chromosomes at all.
Wednesday, May 14, 2014
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
How Old Memories Fade Away
Discovery of a gene essential for memory extinction could lead to new PTSD treatments.
Friday, September 20, 2013
Reading DNA, Backward and Forward
MIT biologists reveal how cells control the direction in which the genome is read.
Monday, June 24, 2013
Two MIT Professors Named Howard Hughes Medical Institute Investigators
Peter Reddien and Aviv Regev are among 27 top biomedical scientists selected nationwide.
Friday, May 10, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Precisely Engineering 3-D Brain Tissues
New design technique could enable personalized medicine, studies of brain wiring.
Thursday, November 29, 2012
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Genes Associated With Improved Survival for Pancreatic Cancer Patients
Use of non-invasive liquid biopsies could predict in which patients the cancer could recur following surgery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!