Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Learning the Alphabet of Controlling Gene Expression

Published: Monday, January 21, 2013
Last Updated: Monday, January 21, 2013
Bookmark and Share
Scientists at Karolinska Institutet have made a large step towards the understanding of how human genes are regulated.

In a new study, published in the journal Cell, they identified the DNA sequences that bind to over four hundred proteins that control expression of genes. This knowledge is required to understand how differences in genomes of individuals affect their risk to develop disease.

After the human genome was sequenced in 2000, it was hoped that the knowledge of the entire sequence of human DNA could rapidly be translated to medical benefits such as novel drugs, and predictive tools that would identify individuals at risk of disease. This, however, turned out to be harder than anticipated, one of the reasons being that only 1 percent of the genome that code for proteins was in fact possible to read. The remaining part, much of which describes how these proteins should be expressed in different cells and tissues, could not be understood. This, in turn, because the scientists did not know which DNA sequences are functional, and bind to the specific proteins called transcription factors that regulate gene expression.

"The genome is like a book written in a foreign language, we know the letters but cannot understand why a human genome makes a human or the mouse genome a mouse", says Professor Jussi Taipale, who led the study at the Department of Biosciences and Nutrition. "Why some individuals have higher risk to develop common diseases such as heart disease or cancer has been even less understood."

The human genome encodes approximately 1000 transcription factors, and they bind specifically to short sequences of DNA, and control the production of other proteins. In the work published in Cell, the scientists at Karolinska Institutet describe DNA sequences that bind to over 400 such proteins, representing approximately half of all human transcription factors. Data was generated with a new method that uses a modern DNA sequencer that produces hundreds of millions of sequences, giving the results unprecedented accuracy and reliability.

In addition, binding specificities of human transcription factors were compared to those of the mouse. Surprisingly, no differences were found. According to the scientists, these results suggest that the basic machinery of gene expression is similar in humans and mice, and that the differences in size and shape are caused not by differences in transcription factor proteins, but by presence or absence of the specific sequences that bind to them.

"Taken together, the work represents a large step towards deciphering the code that controls gene expression, and provides an invaluable resource to scientists all over the world to further understand the function of the whole human genome", says Professor Taipale.  The resulting increase in our ability to read the genome will also improve our ability to translate the rapidly accumulating genomic information to medical benefits.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Insights into Early Human Embryo Development
Researchers at Karolinska Institutet and the Ludwig Cancer Research in Stockholm have conducted a detailed molecular analysis of the embryo’s first week of development.
Monday, April 11, 2016
New Mechanism Discovered Behind Infant Epilepsy
Scientists at Karolinska Institutet and Karolinska University Hospital have discovered a new explanation for severe early infant epilepsy.
Monday, September 07, 2015
Stem Cell Research Aims to Tackle Parkinson's Disease
New ways to grow brain cells in the laboratory could eventually provide a way to treat Parkinson's disease, scientists say.
Wednesday, January 23, 2008
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Drug - Gene 'One-Two' Punch Against Cancer
Researchers identify gene-drug combinations that, together, target and kill cancer cells while not targeting healthy cells.
Drug Candidates Reduce Abnormal Protein Production
New drug candidates improve cell ability to catch miss-folded proteins that could cause deadly diseases.
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
RNA Suppresses Inflammation
Researchers identify a long noncoding RNA that regulates innate immunity.
Competition to Decipher RNA-Cancer Link
DREAM challenge aims to find the best algorithms for detecting abnormal RNA molecules in cancer cells.
Red Hair Gene Increases Cancer Mutations
Red hair gene variant drives up skin cancer mutations equivalent to that expected from 21 years of sun exposure.
Type 2 Diabetes Genetics Revealed
The largest study of its kind into type 2 diabetes has produced the most detailed picture to date of the genetics underlying the condition.
Blood Cancer Could be Prevented Before it Develops
New research suggests myeloma could be prevented before it develops out of symptomless condition in bone marrow.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!