Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Launches Collaborative Effort to Find Biomarkers for Parkinson's

Published: Thursday, January 24, 2013
Last Updated: Thursday, January 24, 2013
Bookmark and Share
New online resource will support data sharing.

A new initiative aims to accelerate the search for biomarkers - changes in the body that can be used to predict, diagnose or monitor a disease - in Parkinson's disease, in part by improving collaboration among researchers and helping patients get involved in clinical studies.

A lack of biomarkers for Parkinson's has been a major challenge for developing better treatments.

The Parkinson’s Disease Biomarkers Program (PDBP) supports efforts to invent new technologies and analysis tools for biomarker discovery, to identify and validate biomarkers in patients, and to share biomarker data and resources across the Parkinson's community.

The program is being launched by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

Biomarkers can include changes in body chemistry or physiology, in genes and how they are regulated, and even subtle changes in a person's behavior.

For example, certain antibodies in the blood can be biomarkers for different types of infection. For Parkinson's, there are no proven biomarkers.

Parkinson's disease is a movement disorder that affects about 1 million people in the United States. Symptoms of the disease get worse over time, and include uncontrollable shaking, rigidity, slowed movements and impaired balance.

Inside the brain, there is a progressive loss of cells in a motor control region called the substantia nigra, and an accumulation of protein-filled structures called Lewy bodies. Lewy bodies and other telltale signs cannot be observed until after death.

Biomarkers could be used to detect and monitor the disease much earlier, perhaps even before symptoms appear. This could improve the success of existing therapies and help researchers test new ones in clinical trials.

The range of potential biomarkers for Parkinson's is vast, and there have been promising leads. Some researchers are investigating the use of non-invasive imaging to detect changes in brain function or biochemistry.

Several studies have tentatively linked the disease with changes in proteins or other molecules in blood, urine, or in the cerebrospinal fluid (CSF) that bathes the brain and spinal cord. PDBP is an initiative to fund and coordinate multiple biomarker studies.

“Our goal is to accelerate progress toward a robust set of biomarkers for Parkinson's disease by supporting researchers who have strong leads or innovative approaches, bringing them together, and making it easier for them to share and analyze data across studies,” said NINDS director Story Landis, Ph.D.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Thursday, September 29, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
NIH Funds Precision Medicine
NIH have committed roughly $31M to launch a new program for Transdisciplinary Collaborative Centers for health disparities research.
Friday, July 29, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Gut’s Microbial Community Influences Gene Expression
Study identifes gut microbes as mediators of host gene expression through the epigenome, regulating which genes are active in cells.
Novel Urine Test to Predict High-Risk Cervical Cancer
Preliminary studies affirm accuracy and potential cost savings to screen for virus-caused malignancy.
T Cell Channel Could Be Targeted to Treat Cancers
Researcher identify ion-channel found within T cells that could be targeted to reduce development of neck and head cancers.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!