Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Imaging Biomarker Predicts Response to Rapid Antidepressant

Published: Wednesday, February 06, 2013
Last Updated: Tuesday, February 05, 2013
Bookmark and Share
Signals dysfunction in brain system targeted by scopolamine - NIH study.

A telltale boost of activity at the back of the brain while processing emotional information predicted whether depressed patients would respond to an experimental rapid-acting antidepressant, a National Institutes of Health study has found.

"We have discovered a potential neuroimaging biomarker that may eventually help to personalize treatment selection by revealing brain-based differences between patients," explained Maura Furey, Ph.D., of NIH's National Institute of Mental Health (NIMH).

Furey, NIMH's Carlos Zarate, M.D., and colleagues, reported on their functional magnetic resonance imaging (fMRI) study of a pre-treatment biomarker for the antidepressant response to scopolamine (http://www.nimh.nih.gov/science-news/2006/nimh-researchers-discover-medications-antidepressant-potential.shtml), Jan. 30, 2013, online in JAMA Psychiatry.

Scopolamine, better known as a treatment for motion sickness, has been under study (http://projectreporter.nih.gov/project_info_description.cfm?aid=8556944&icde=15145736&ddparam=&ddvalue=&ddsub=&cr=2&csb=default&cs=ASC) since Furey and colleagues discovered its fast-acting antidepressant properties in 2006.

Unlike ketamine (http://www.nimh.nih.gov/science-news/2012/brain-signal-ids-responders-to-fast-acting-antidepressant.shtml), scopolamine works through the brain's acetylcholine chemical messenger system.

The NIMH team's research has demonstrated that by blocking receptors for acetylcholine on neurons, scopolamine can lift depression in many patients within a few days; conventional antidepressants typically take weeks to work. But not all patients respond, spurring interest in a predictive biomarker.

The acetylcholine system plays a pivotal role in working memory, holding information in mind temporarily, but appears to act by influencing the processing of information rather than through memory.

Imaging studies suggest that visual working memory performance can be enhanced by modulating acetylcholine-induced activity in the brain's visual processing area, called the visual cortex, when processing information that is important to the task.

Since working memory performance can predict response to conventional antidepressants and ketamine, Furey and colleagues turned to a working memory task and imaging visual cortex activity as potential tools to identify a biomarker for scopolamine response.

Depressed patients have a well-known tendency to process and remember negative emotional information. The researchers propose that this bias stems from dysregulated acetylcholine systems in some patients.

They reasoned that such patients would show aberrant visual cortex activity in response to negative emotional features of a working memory task. They also expected to find that patients with more dysfunctional acetylcholine systems would respond better to scopolamine treatment.

Before receiving scopolamine, participants performed a working memory task while their brain activity was monitored via fMRI. For some trials, it required that they pay attention to, and remember, the emotional expression (sad, happy, etc.) of faces flashing on a computer monitor.

For other trials, they had to pay attention to only the identity, or non-emotional feature, of the faces. After scanning, and over the following several weeks, 15 patients with depression and 21 healthy participants randomly received infusions of a placebo (salt solution) and/or scopolamine. Mood changes were monitored with depression rating scales.

Overall, scopolamine treatment reduced depression symptoms by 63 percent, with 11 of the patients showing a significant clinical response.

The strength of this response correlated significantly with visual cortex activity during key phases of the working memory task - while participants were paying attention to the emotional content of the faces. There was no such correlation for trials when they attended to the identity of the faces.

The findings suggest that acetylcholine system activity drives visual cortex activity that predicts treatment response - and that differences seen between depressed patients and controls may be traceable to acetylcholine dysfunction.

Overall, patients showed lower visual cortex activity than controls during the emotion phase of the task. Patients showing activity levels most dissimilar to controls experienced the greatest antidepressant response to scopolamine treatment.

Visual cortex activity in patients who didn't respond to scopolamine more closely resembled that of controls. As hypothesized, the pretreatment level of visual cortex activity appears to reflect the extent of patients' acetylcholine system dysfunction and to predict their response to the experimental medication, say the researchers.

Preliminary evidence suggests that such visual cortex activity in response to emotional stimuli may also apply to other treatments and may prove to be a shared biomarker of rapid antidepressant response, according to Furey.

The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Precision Medicine
NIH have committed roughly $31M to launch a new program for Transdisciplinary Collaborative Centers for health disparities research.
Friday, July 29, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Scientific News
Detecting Alzheimer's with Smell Test
Odour identification test may offer low-cost alternative for predicting cognitive decline and detecting early-stage Alzheimer’s disease.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Drug - Gene 'One-Two' Punch Against Cancer
Researchers identify gene-drug combinations that, together, target and kill cancer cells while not targeting healthy cells.
Drug Candidates Reduce Abnormal Protein Production
New drug candidates improve cell ability to catch miss-folded proteins that could cause deadly diseases.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!