Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

apceth Received the Second Round of Funding for Its Innovative Stem Cell-Based Cancer Therapeutic

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
Development of apceth’s first innovative “Advanced Therapy Medicinal Product” based on modified adult stem cells for cancer therapy.

As of January 2013 apceth has entered the second round of funding for the development of its first cancer therapeutic based on patient’s own modified adult mesenchymal stem cells (MSC) running under the portfolio name Agenmestencel-T.

In December 2012 apceth has successfully concluded the first 2.5-year round of funding through the Federal Ministry of Education and Research (BMBF) for the development of Agenmestencel-T as part of the Munich Biotech Cluster initiative “m4 Personalized Medicine and Targeted Therapies” (Cluster project PM5, FKZ: 16EX1021K).

The Munich Biotech Cluster comprises a rich network of biotech and pharma companies, research institutions and clinical centers in order to promote and expedite the creation of the future orientated personalized and targeted therapy strategies. As the winner of the second round of the “Leading-Edge Cluster Competition” in 2010 the Munich Biotech Cluster has at its disposal a considerable funds granted by BMBF and the Bavarian Government within its “m4 Personalized Medicine and Targeted Therapies” initiative for this ambitious aim.

The second round of funding through BMBF apceth was granted at the end of 2012 as part of the m4 Cluster initiative. With this apceth’s total approved budget for the development of Agenmestencel-T amounted to 4.7 million € within a period of less than five years between July 2010 and March 2015.

Agenmestencel-T is a highly innovative stem cell-based medicinal product for personalized therapy of advanced and/or metastatic cancers. With Agenmestencel-T apceth is committed to provide a novel cell-based cancer drug which will be custom-made for every single patient. Combining the stringent principles of pharmaceutical development with targeted biomarker-based strategies for patient stratification, apceth aims to create the cancer drugs of uppermost quality and safety, while identifying those cancer patients that can mostly benefit from this novel cell therapy.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos