Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

apceth Received the Second Round of Funding for Its Innovative Stem Cell-Based Cancer Therapeutic

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
Development of apceth’s first innovative “Advanced Therapy Medicinal Product” based on modified adult stem cells for cancer therapy.

As of January 2013 apceth has entered the second round of funding for the development of its first cancer therapeutic based on patient’s own modified adult mesenchymal stem cells (MSC) running under the portfolio name Agenmestencel-T.

In December 2012 apceth has successfully concluded the first 2.5-year round of funding through the Federal Ministry of Education and Research (BMBF) for the development of Agenmestencel-T as part of the Munich Biotech Cluster initiative “m4 Personalized Medicine and Targeted Therapies” (Cluster project PM5, FKZ: 16EX1021K).

The Munich Biotech Cluster comprises a rich network of biotech and pharma companies, research institutions and clinical centers in order to promote and expedite the creation of the future orientated personalized and targeted therapy strategies. As the winner of the second round of the “Leading-Edge Cluster Competition” in 2010 the Munich Biotech Cluster has at its disposal a considerable funds granted by BMBF and the Bavarian Government within its “m4 Personalized Medicine and Targeted Therapies” initiative for this ambitious aim.

The second round of funding through BMBF apceth was granted at the end of 2012 as part of the m4 Cluster initiative. With this apceth’s total approved budget for the development of Agenmestencel-T amounted to 4.7 million € within a period of less than five years between July 2010 and March 2015.

Agenmestencel-T is a highly innovative stem cell-based medicinal product for personalized therapy of advanced and/or metastatic cancers. With Agenmestencel-T apceth is committed to provide a novel cell-based cancer drug which will be custom-made for every single patient. Combining the stringent principles of pharmaceutical development with targeted biomarker-based strategies for patient stratification, apceth aims to create the cancer drugs of uppermost quality and safety, while identifying those cancer patients that can mostly benefit from this novel cell therapy.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!