Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

MicroRNA Molecule May Serve as Biomarker, Target for Brain Metastases in Breast Cancer Patients

Published: Wednesday, February 06, 2013
Last Updated: Wednesday, February 06, 2013
Bookmark and Share
Currently, most deaths from breast cancer are a result of metastatic disease.

New research shows that cancer stem-like cells — commonly defined as cells within a tumor with the capacity to initiate a new tumor, proliferate rapidly, differentiate and cause chemotherapy resistance — may play a role in breast cancer metastasis.

“Recent research has shown that microRNAs are involved in tumor initiation and progression, and we hypothesized that they also may play a role in metastasis, particularly in relation to cancer stem-like cells,” said Kounosuke Watabe, Ph.D., associate director for basic science at the University of Mississippi Medical Center in Jackson, Miss.

Watabe and colleagues performed microRNA profile analysis on RNA extracted from cancer stem-like cells isolated from a human breast cancer cell line and two highly metastatic variants of this cell line.

“We found that miR-7 is a metastasis suppressor in cancer stem-like cells,” Watabe said. “When we increased expression of miR-7 in cancer stem-like cells from metastatic human breast cancer cell lines, it suppressed their metastatic properties.”

Next, the researchers examined the molecular pathway downstream of miR-7 to find its targets and discovered that miR-7 suppressed expression of KLF4.

“High expression of KLF4 was inversely associated with brain metastasis-free survival but was not associated with bone metastasis,” Watabe said. “This was confirmed in an animal model when we found that expression of miR-7 significantly suppressed the ability of cancer stem-like cells to metastasize to the brain but not the bone.”

Finally, the researchers tested tumor samples from patients with breast cancer whose disease metastasized to the brain. Results showed that miR-7 was downregulated and KLF4 was upregulated. The miR-7/KLF4 axis played a critical role in cancer stem-like cell brain metastasis, according to Watabe.

Few treatments currently exist for brain metastasis because few drugs can penetrate the blood–brain barrier, which prevents chemotherapy from reaching the brain.

“Cancer cells find the brain to be a kind of sanctuary where they can survive longer,” Watabe said. “It is possible that miR-7 and KLF4 may serve as diagnostic or prognostic markers, or therapeutic targets for the prediction of, or treatment of, brain metastasis.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NCI Scientists Identify Targets for Melanoma Immunotherapy
Researchers have identified seven targets that could potentially be used to develop new immunotherapies for patients with metastatic melanoma.
Wednesday, September 11, 2013
MicroRNA Molecule May Serve as Biomarker
MicroRNA molecule called miR-7 decreased in highly metastatic cancer stem-like cells.
Monday, February 18, 2013
Scientific News
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Coronavirus Breakthrough
Protein mutation affects spread and virulence of respiratory virus.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos