Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gene Thought to be Linked to Alzheimer's is Marker for Only Mild Impairment

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Defying the widely held belief that a specific gene is the biggest risk factor for Alzheimer's disease, report says that people with that gene are more likely to develop mild cognitive impairment -- but not Alzheimer's.

The study suggests that older adults with healthy brain function can get genetic tests to predict increased risk of future mild cognitive impairment. However, once they are impaired cognitively, the tests won't predict their likelihood of developing Alzheimer's.

"Right now, genetic tests are used in exactly the opposite way. That is, healthy people don't get the tests to predict their risk of mild cognitive impairment, but impaired people get them to predict their risk of Alzheimer's disease," said Charles Brainerd, professor of human development and the study's lead co-author with Valerie Reyna, professor of human development. "So, impaired people think that tests will tell them if they are at increased risk of Alzheimer's, which they won't. And healthy people think that tests won't tell them whether they are at increased risk of cognitive impairment, which they will."

The researchers describe their findings in the January issue of Neuropsychology (27:1).

The work builds on previous research by Brainerd and associates that suggested the ε4 allele of the APOE genotype increases the risk of mild cognitive impairment as well as Alzheimer's.

The researchers analyzed data from the only nationally representative dataset of its kind, the National Institute on Aging's Aging, Demographics and Memory Study. They looked at data from 418 people over age 70 to see if those who carried the allele were more likely to develop mild cognitive impairment compared with those who did not have the allele. They also looked at whether ε4 carriers with mild cognitive impairment were more likely to develop Alzheimer's disease compared with non-carriers with mild cognitive impairment.

They found that healthy ε4 carriers were nearly three times -- 58 percent -- more likely to develop mild cognitive impairment compared with non-carriers. However, ε4 carriers with mild cognitive impairment developed Alzheimer's at the same rate as non-carriers.

While previous studies showed that the ε4 allele was more common in people with Alzheimer's disease, this study shows that it does not increase the risk that healthy or impaired people will become demented. Rather, ε4 increases the risk that healthy people will become cognitively impaired, and impaired people are the primary source of new Alzheimer's diagnoses, Brainerd explained. "The reason ε4 is a risk factor for mild cognitive impairment, but not for progression from mild cognitive impairment to Alzheimer's disease, is that this allele is a marker of initial cognitive declines -- for example, memory and executive function -- that are associated with mild cognitive impairment but not of subsequent declines in cognition or in daily functioning that are associated with forms of Alzheimer's disease."

Brainerd also noted that the effects of ε4 in healthy adults can be detected by the mid-20s. While ε4 is not a risk factor for the severe cognitive declines that signal dementia, it is risk factor for the weaker declines that eventually produce mild cognitive impairment.

The co-authors of the paper are Ronald Petersen and Glenn Smith of the Mayo Clinic; Anna Kenney '11, Caroline Gross '12 and Emily Taub '10 of Cornell -- all of whom helped conduct the research as undergraduates in Brainerd's lab; Brenda Plassman of Duke University Medical Center; and Gwenith Fisher of the University of Michigan.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Physicists Tease out Twisted Torques of DNA
Like an impossibly twisted telephone cord, DNA, the molecule that encodes genetic information, also often finds itself twisted into coils.
Monday, July 01, 2013
DNA Editor Named Runner-up Breakthrough of 2012
A discovery that allows life scientists to precisely edit genomes for everything from crop and livestock improvement to human gene and cell therapy was named runner-up for Science magazine's 2012 Breakthrough of the Year.
Wednesday, February 27, 2013
Scientific News
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos