Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Flipping the 'Off' Switch on Cell Growth

Published: Wednesday, February 27, 2013
Last Updated: Wednesday, February 27, 2013
Bookmark and Share
Protein uses multiple means to help cells cope when oxygen runs low.

A protein known for turning on genes to help cells survive low-oxygen conditions also slows down the copying of new DNA strands, thus shutting down the growth of new cells, Johns Hopkins researchers report. Their discovery has wide-ranging implications, they say, given the importance of this copying — known as DNA replication — and new cell growth to many of the body’s functions and in such diseases as cancer.

“We’ve long known that this protein, HIF-1alpha, can switch hundreds of genes on or off in response to low oxygen conditions,” says Gregg Semenza, M.D., Ph.D., a molecular biologist who led the research team and has long studied the role of low-oxygen conditions in cancer, lung disease and heart disorders. “We’ve now learned that HIF-1alpha is even more versatile than we thought, as it can work directly to stop new cells from forming.” A report on the discovery appears in the Feb. 12 issue of Science Signaling.

With his team, Semenza, who is the C. Michael Armstrong Professor of Medicine at the Johns Hopkins University School of Medicine’s Institute for Cell Engineering and McKusick-Nathans Institute of Genetic Medicine, discovered HIF-1alpha in the 1990s and has studied it ever since, pinpointing a multitude of genes in different types of cells that have their activity ramped up or down by the activated protein. These changes in so-called “gene expression” help cells survive when oxygen-rich blood flow to an area slows or stops temporarily; they also allow tumors to build new blood vessels to feed themselves.

To learn how HIF-1alpha’s own activity is controlled, the team looked for proteins from human cells that would attach to HIF-1alpha. They found two, MCM3 and MCM7, that limited HIF-1alpha’s activity, and were also part of the DNA replication machinery. Those results were reported in 2011.

In the new research, Semenza and his colleagues further probed HIF-1alpha’s relationship to DNA replication by comparing cells in low-oxygen conditions to cells kept under normal conditions. They measured the amount of DNA replication complexes in the cells, as well as how active the complexes were. The cells kept in low-oxygen conditions, which had stopped dividing, had just as much of the DNA replication machinery as the normal dividing cells, the researchers found; the difference was that the machinery wasn’t working. It turned out that in the nondividing cells, HIF-1alpha was binding to a protein that loads the DNA replication complex onto DNA strands, and preventing the complex from being activated.

“Our experiments answered the long-standing question of how, exactly, cells stop dividing in response to low oxygen,” says Maimon Hubbi, Ph.D., a member of Semenza’s team who is now working toward an M.D. degree. “It also shows us that the relationship between HIF-1alpha and the DNA replication complex is reciprocal — that is, each can shut the other down.”

Other authors on the report are Kshitiz, Daniele M. Gilkes, Sergio Rey, Carmen C. Wong, Weibo Luo and Andre Levchenko, all of the Johns Hopkins University School of Medicine, Deok-Ho Kim of the University of Washington, Seattle and Chi V. Dang of the University of Pennsylvania.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Brain Inflammation A Hallmark Of Autism
Johns Hopkins study is largest so far of gene expression in autism brains.
Thursday, December 11, 2014
Cellular Pump Sabotages Cancer Drug Studies that use Glow Chemical
Scientists discover that a widely used means of illuminating cancer cells could undermine studies of the potential value of experimental anti-cancer drugs.
Thursday, January 03, 2008
Omicia and Johns Hopkins Receive Small Business Technology Transfer Grant from NIH
Omicia recieves a $187,700 grant from NIH to support a collaboration with Johns Hopkins University to identify genetic causes of cardiovascular disease.
Friday, August 17, 2007
Researchers Reveals How Certain Chemicals Protect the Brain Against Cell Damage
Study shows that PGE2 offers some protection against neurotoxicity, linked to stimulation of receptors EP2 and EP4.
Monday, November 28, 2005
Scientific News
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos