Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Study Maps Human Metabolism in Health and Disease

Published: Monday, March 04, 2013
Last Updated: Monday, March 04, 2013
Bookmark and Share
Scientists have produced an instruction manual for the human genome that provides a framework to better understand the relationship between an individual’s genetic make-up and their lifestyle.

The international team of researchers say their study – published in Nature Biotechnology – provides the best model yet to explain why individuals react differently to environmental factors such as diet or medication.

“This research is the second important stage of our understanding of the human genome,” said study author Professor Pedro Mendes, from The University of Manchester’s School of Computer Science. “If the sequencing of the human genome provided us with a list of the biological parts then our study explains how these parts operate within different individuals.

“The results provide a framework that will lead to a better understanding of how an individual’s lifestyle, such as diet, or a particular drug they may require is likely to affect them according to their specific genetic characteristics. The model takes us an important step closer to what is termed ‘personalised medicine’, where treatments are tailored according to the patient’s genetic information.”

The research, which involved scientists from Manchester, Cambridge, Edinburgh, Reykjavik, San Diego, Berlin and others, mapped 65 different human cell types and half of the 2,600 enzymes that are known drug targets in order to produce the network model.

Co-author Douglas Kell, Chief Executive of Biotechnology and Biological Sciences Research Council (BBSRC) and Professor of Bioanalytical Science at the Manchester Institute of Biotechnology, said: "To understand the behaviour of a system one must have a model of it. By converting our biological knowledge into a mathematical model format, this work provides a freely accessible tool that will offer an in-depth understanding of human metabolism and its key role in many major human diseases.

“This study offers the most complete model of the human metabolic network available to date to help analyse and test predictions about the physiological and biochemical properties of human cells.”

Dr Nicolas Le Novère, from the Babraham Institute in Cambridge (UK), said: “This is a model that links the smallest molecular scale to the full cellular level. It contains more than 8,000 molecular species and 7,000 chemical reactions – no single researcher could have built this alone. Having large collaborations like these, using open standards and data-sharing resources, is crucial for systems biology.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Leukemia Gene Stops Blood Cells ‘Growing Up’
University of Manchester scientists have identified a gene – FOXC1 – that, if switched on, causes more aggressive cancer in a fifth of acute myeloid leukaemia (AML) patients, according to a Cancer Research UK study.
Wednesday, September 16, 2015
Molecular Clues to Serious Illnesses to be Explored
The University of Manchester is to lead a new £2.9 million molecular pathology research project to improve diagnosis and treatment of non-cancerous diseases within the NHS.
Friday, July 31, 2015
Gene Variants Show Potential In Predicting Rheumatoid Arthritis Disease Outcomes
Arthritis Research UK-funded scientists at The University of Manchester have identified a new way in which genotyping can be used to predict disease outcomes among sufferers of rheumatoid arthritis.
Thursday, April 30, 2015
Current Detection of Gene Mutations Misses People At High Risk Of Cancer
Research on the BRCA gene mutation in the Jewish population shows that the current process of identifying people misses half the people who have the mutation and are at risk of developing cancer.
Tuesday, December 02, 2014
New Strategy in Fight against Cancer
Scientists have identified a new strategy in the fight against cancer, having found a mechanism for switching off a chemical signal that is intimately linked to progression of the disease.
Monday, September 22, 2008
Eden Biodesign and the University of Manchester Intellectual Property Limited Develop Innovative Treatment for Cancer
UMIP selects Eden Biodesign to provide a range of services for the development of therapeutic for treatment of macular degeneration and cancer.
Wednesday, August 08, 2007
Scientific News
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos